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Motivation

* Current techniques for DNN pruning often involve intricate
multi-step processes that require domain-specific expertise, It
makes their widespread adoption challenging. To address the
limitation, the Only-Train-Once (OTO) and OTOvV2 are
proposed to eliminate the need for additional fine-tuning
steps by directly training and compressing a general DNN
from scratch.

* However, OTO has poor final performance. It reformulates
the objective as a constrained regularization problem. The
local minima may be scattered in diverse locations. Yet, as the
augmented regularization in OTO penalizes the mixed 1.1/1.2
norm of all trainable parameters in ZIGs, it restricts the
search space to converge around the origin point.



Motivation

* OTOV2 improves OTO by constructing pruning groups in
Z1Gs based on salience scores and only penalizes the
parameters in pruning groups. However, model variables vary
as training and the statically selected pruning groups in the
early training stage can lead to convergence 1ssues of local
optima. Drawbacks in the algorithm design prevent them
from giving a complete convergence analysis. For instance,
OTO assumes the deep model as a strongly convex function
and OTOv2 assumes a full gradient estimate at each iteration,
which does not align with the practical settings of DNN
training.
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Compressed Model

Auto-Train-Once
(ATO) : end-to-end
model pruning
algorithm.

Structural pruning
is a widely adopted
direction to reduce

the size of DNNs.

We propose a generic framework (ATO) to train and prune DNNs in a
completely end-to-end and automatic manner. After model training, we can
directly obtain the compressed model without additional fine-tuning steps.
We design a network controller to dynamically guide the channel pruning,
preventing being trapped in local optima.



Preliminary

Definition 1. (Zero-Invariant Groups (ZIGs)) [7]. In the
context of a layer-wise Deep Neural Network (DNN), en-
tire trainable parameters are divided into disjoint groups
G = {g}. These groups are termed zero-invariant groups
(ZIGs) when each group g € G exhibits zero-invariant,
where zero-invariant implies that setting all parameters in
g to zero leads to the output corresponding to the next layer
also being zeros.
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The Convolutional layer (Conv) without bias followed

by the batch-normalization layer (BN) can be shown as

below:
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where Z! denotes input tensor, ® denote the convolutional
operation, K! presents one output channel in /" layer, © is
the element-wise multiplication, a(-) is the activation func-
tion, and p!, o', ~!, B' represent running mean, standard
deviation, weight and bias, respectively in BN. Each output
channel of the Conv K, and corresponding channel-wise
BN weight 4! and bias 3' belong to one ZIG because they
being zeros results in their corresponding channel output to
be zeros as well.

=l

. ’C bl 'Yl /Bl
%

' l

v s

g




Auto-Train-Once

Algorithm 5§ ATO Algorithm

1: Input: Target model with model weights M (no need %ﬂ j(M) Z=£(M) + g(./\/l)
to be pre-tained). Datasets D, D¢y, learning rate 7, A,

7, total steps 7', warm-up steps T, controller network =L ( flzs M), y) + Z Ag [[[M]gl
training steps T+ and 1,4 geg

2: Initialization: Construct ZIGs G of M. Build con- A
troller network with weight W based on the size of G. Upper: Task loss with selected regularizations on
w is initialized as {0, 1}9! 71Gs. '

3 ToEt=13,2..., Fdo |

4:  for a mini-batch (z,y) in D do
s: Compute the _stochastic gradient estimator Lower: Standard Proximal Gradients for Group Lasso
VMﬁ(M) in 2o S I
6: Update model weights M with any stochastic op- (2]
Elmlzer. [Z]q T n)\g ”[z] 9”2 s
o lfT Z T‘V«" the‘rl‘ ———————————————— | rox ([z] ) . ’ g9
8: Perform projection operator and update follow- prox,,\2lg) = q if || [2] g | = aAg,
ind Eq.| orlEq. | on ZIGs with w. 0, otherwise .
9: end if o e AN
10:  end for e v,
11: if Totore <T <T,,qthen . T 2
12: W, w « CN-Update(M, W, w, DcN) [ijgks(z)] — 0 if [Z]q [M]q <e€ H[M]"
= if . . . ¢ g b
B e Similar to AGN in SNAP. [l otherwise.
14: end for
15: Output: Directly remove pruned structures with mask ~ Half Space Projection [Chen, Tianyi, et al NeurIPS
o and constmct a compressedmodel. 2021]: Set parameters to zero, if the updated parameters

and the original ones are close.
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Controller Network

Layer Type Shape
Input |B| x 64
Bi-GRU 64 x 128 x 2
LayerNorm + ReLU 256

Linear Layer 256 x |B;|, B; C B
Concatenate |G|

Gumbel-Sigmoid -

Round —» w -

w = round(sigmoid((o + s + b) /7))

We make efforts to reduce extra
computational overhead due to the
use of controller network. We only
use 5% data to train it. Controller
Network uses bi-directional gated
recurrent units (GRU). It 1s followed
by linear layers. To reduce the training
costs, we divide Z1Gs into multiple
disjoint blocks and the sum of |B;| =
|G |. The block is one layer in ResNet
models or one InvertedResidual block
in MobileNetv2. We stop the training
of CN in the half of total step.

where sigmoid(*) 1s the sigmoid function, round(*) 1s the rounding function, S is
sampled from Gumbel distribution (S ~ Gumbel(0, 1)), b and 1 are constants

with values as 3.0 and 0.4, respectively.



Experiment — CIFAR

Dataset Architecture Method Baseline Acc | Pruned Acc A-Acc Pruned FLOPs

OTOv2 [17] 93.02 % 92.86% -0.16% 79.7%

ResNet-18
ATO (ours) 94.41% 94.51% | + 0.10% 79.8%
DCP-Adapt [119] 93.80% 93.81% +0.01% 47.0%
SCP [50] 93.69% 93.23% —0.46% 51.5%
FPGM [41] 93.59% 92.93% —0.66% 52.6%
SFP [40] 93.59% 92.26% -1.33% 52.6%
ResNet-56 FPC [39] 93.59% 93.24% —-0.25% 52.9%
HRank [73] 93.26% 92.17% —-0.09% 50.0%
CIFAR-10 DMC [31] 93.62% 92.69% +0.07% 50.0%
GNN-RL [110] 93.49% 93.59% +0.10% 54.0%
ATO (ours) 93.50% 93.74% | + 0.24% 55.0%
ATO(ours) 93.50% 93.48 % —0.02% 65.3%
Uniform [119] 94.47% 94.17% —0.30% 26.0%
DCP [119] 94.47% 94.69% +0.22% 26.0%
MobileNetV2 DMC [31] 94.23% 94.49% +0.26% 40.0%
SCOP [96] 94.48% 94.24% -0.24% 40.3%
ATO (ours) 94.45% 94.78% +0.33% 45.8%
OTOv2 [17] - 74.96% - 39.8%

ResNet-18
ATO (ours) 77.95% 76.79% —0.07% 40.1%

CIFAR-100

OTOv2 [17] - 76.31% - 49.5%

ResNet-34
ATO (ours) 78.43 % 78.54 % +0.11% 49.5%




Experiment - ImageNet

Architecture Method Base Top-1 | Base Top-5 | Pruned Top-1 (A Top-1) | Pruned Top-5 (A Top-5) | Pruned FLOPs
FPGM [41] 73.92% 91.62% 72.63% (—1.29%) 91.08% (—0.54%) 41.1%
Taylor [82] 73.31% = 72.83% (—0.48%) - 24.2%
ResNet-34 DMC [31] 73.30% 91.42% 72.57% (—0.73%) 91.11% (—0.31%) 43.4%
SCOP [96] 73.31% 91.42% 72.62% (—0.69%) 90.98% (—0.44%) 44.8%
ATO (ours) 73.31% 91.42% 72.92% (—0.39%) 91.15% (—0.27%) 44.1%
DCP [119] 76.01% 92.93% 74.95% (—1.06%) 92.32% (—0.61%) 55.6%
CCP [86] 76.15% 92.87% 75.21% (—0.94%) 92.42% (—0.45%) 54.1%
FPGM [41] 76.15% 92.87% 74.83% (—1.32%) 92.32% (—0.55%) 53.5%
ABCP [74] 76.01% 92.96% 73.86% (—2.15%) 91.69% (—1.27%) 54.3%
DMC [31] 76.15% 92.87% 75.35% (—0.80%) 92.49% (—0.38%) 55.0%
Random-Pruning [66] 76.15% 92.87% 75.13% (—1.02%) 92.52% (—0.35%) 51.0%
DepGraph [28] 76.15% s 75.83% (—0.32%) = 51.7%
DTP [71] 76.13% . 75.55% (—0.58%) . 56.7%
ResNet-50 ATO (ours) 76.13% 92.86% 76.59% (-+0.46%) 93.24% (+0.38%) 55.2%
- preim] | 613% | - - 524% (—0.89%) | - 60.9%
OTOv2 [17] 76.13% 92.86% 75.20% (—0.93%) 92.22% (—0.66%) 62.6%
ATO (ours) 76.13% 92.86% 76.07% (—0.06%) 92.92% (+0.06%) 61.7%
- prei) | 613% | - | e ey | - 67.3%
OTOV1 [16] 76.13% 92.86% 74.70% (—1.43%) 92.10% (—0.76%) 64.5%
OTOv2 [17] 76.13% 92.86% 74.30% (—1.83%) 92.10% (—0.76%) 71.5%
ATO (ours) 76.13% 92.86% 74.77% (—1.36%) 92.25% (—0.61%) 71.0%
Uniform [89] 71.80% 91.00% 69.80% (—2.00%) 89.60% (—1.40%) 30.0%
AMC [42] 71.80% - 70.80% (—1.00%) - 30.0%
ohileNet V2 CcC [70] 71.88% 2 70.91% (—0.97%) 2 28.3%
MetaPruning [76] 72.00% - 71.20% (—0.80%) - 30.7%
Random-Pruning [66] | 71.88% - 70.87% (—1.01%) - 29.1%
ATO (ours) 71.88% 90.29% 72.02% (+0.14%) 90.19% (—0.10%) 30.1%




_Experiment

Table 1. summary of ATO and existing methods
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Figure ResNet50 on ImageNet Compared to OTOs.

ATO outperforms OTO and OTOV2 with different pruning rates.



