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1. Background
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Existing Data-Free Knowledge Distillation (DFKD) task

is based on the assumption that the original training data
is not available due to privacy issues.

Generation module

Existing methods synthesize data by generating modules
or sample unlabeled data from the open-world. Based on
Teacher this, they can be divided into: 1) generation-based; 2)

Generation-based Sampling-based sampling-based methods.
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2. Motivations & Toy Experiment

Motivations : For existing DFKD methods, the severe distribution shifts between
their substitution and original data causes performance bottlenecks.

Analysis:

* For generation-based methods, the synthetic data relies on
the teacher’s guidance, and it is easier to synthesize the class
familiar to the generator.

* For sampling based methods, the sampled data entirely
depends on the teacher’s preference for various classes.
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Experiment: °

By evaluating the substitution data and original training
data of various DFKD methods, we found that there 1s a serious
bias in 1mage quality and category proportion.
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Causal inference is dedicated to dealing with bias issues. Can we use this technology to address the challenges of DFKD?



3. Proposed Method
The causal graph in DFKD task

Firstly, we customize the causal graph according to the
properties of the variables in the DFKD task.

During the distillation process, the teacher and student are fed
the same substitution data. Our causal graph is applicable to
almost all existing DFKD methods so that it can be used as a
general framework.
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X: Substitution Inputs T: The teacher’s predictions
Z: Confounder S: The student’s predictions

/ — X:
The confounder Z causes the substitution data X
to be biased compared to the original data.

Z—S:
The detrimental confounder Z confounds and
affects the student’s training via the causal link.

X—>T/S&TS:

The links reflects the interaction causal effect
between these two predictions during knowledge
distillation. Through these paths, the student

can learn consistent knowledge from its teacher.

The backdoor causal path as X «— Z — §.



3. Proposed Method

Theory and practice of backdoor adjustments

From theory:

According to the causal graph and the causal theory,
cutting off the backdoor causal path X < Z — S can
suppress the interference of the impure knowledge.
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(a) Confounder dictionary construction

In practice,

We design a two-stage framework including:

(1) cofounder dictionary construction

(i1) knowledge distillation with bias compensation.
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(b) Knowledge distillation with bias compensation



3. Proposed Method

Backdoor Adjustment & do operator:

The original likelithood estimate:

Likelihood after adding the do operator:
P(S|do(X))=>Y _P(S|X,KD(T = fr(X),S=fs(X,2))) P(2),

Confounder Dictionary Construction:

Define dictionary:

7 = [21322?...,ZI\I}

Pre-trained model prediction and clustering stratification:

M = {m; ERd}?:; Zi = N%ij;lmi

Knowledge Distillation with Bias Compensation:
Normalized Weighted Geometric Mean (NWGM):

P(S|do(X))~P(S|X,KD(fr(X),»  fs(X,z)P(2))).

The prior information:
N

Fz) =Y AzPlz),
=1

The integration of the biased predictions and the prior
information:

P(S]do(X)) = ¢(fs(X), F(2))

Predictions compensation:

\i = softmax (W, - Tanh(quS(X) + Wizi)),



4. Experimental Results

Performance Comparison

Table 1. The accuracy (%) on CIFAR-10 and CIFAR-100 about baseline methods vs. their KDCI-based version. T.backbone and
S.backbone represent the backbones of the teacher and student. Teacher and Student refer to scratch training on original data. The

improved results are marked in bold. {{,1, 4, 1} denote the provenance mentioned in the analysis.

Dataset CIFAR-10 CIFAR-100
T.backbone resnet-34 vgg-11 wimn-40-2 wrn-40-2 wrn-40-2 resnet-34 vgg-11 wrn-40-2 wrn-40-2 wrn-40-2
S.backbone resnet-18 resnet-18 wrm-16-1 wrn-40-1 wrn-16-2 resnet-18 resnet-18 wrn-16-1 wrn-40-1 wrn-16-2
Teacher 95.70 92.25 94.87 94.87 94.87 78.05 71.32 75.83 75.83 75.83
Student 95.20 95.20 91.12 93.94 93.95 77.10 77.10 65.31 72.19 73.56
DAFL 92.22 81.10 65.717 81.33 81.55 74.47 54.16 20.88" 42.83 43.70
DAFL+KDCI 92.62 81.31 74.56" 82.91 82.65 74.51 58.79 31.75¢ 46.16 48.48
Fast 94.05 90.53 89.29 92.51 92.45 74.34 67.44 54.02 6391 65.12
Fast+KDCI 94.56 91.16 89.62 93.09 92.85 75.10 68.97 54.69 67.09 68.12
CMI 94.24 91.24 89.16 91.93 92.00 74.64 66.68 55.28 63.44 64.22
CMI+KDCI 94.43 91.28 89.52 92.84 92.73 75.07 69.07 57.19 67.47 67.68
Deeplnv 93.26 90.36 83.04 86.85 89.72 61.32" 54.13% 53.77 61.33 61.34
DeepIlnv+KDCI 93.67 91.42 83.47 89.32 91.06 74.59" 69.674 55.22 62.13 65.90
Mosaick 95.27 91.69 90.03 93.28 92.94 7591 71.58 5932 66.61 67.36
Mosaick+KDCI 95.43 92.36 92.25 94.45 94.20 77.06 71.86 62.03 72.19 72.39
DFEND 95.36 91.86 90.26 93.33 93.11 74.42 68.97 59.02 69.39 69.85
DEND+KDCI 95.44 92.54 92.47 94.43 94.43 77.09 72.12 66.37 74.20 74.52

Table 2. The accuracy (%) on Tiny-ImageNet dataset. The teacher
uses resnet-34, and the student uses resnet-18 as the backbones.
The teacher achieves an accuracy of 52.74%. The GPU time indi-
cates the training time of one epoch on a single RTX 3090 GPU.

Method | Accuracy (%) GPU time Memory-Usage
Fast 28.79 101.67s 5745M

Fast+ KDCI 38.23 (+9.44) 104.43s (+2.71%) 5748M (+0.05%)
Deeplnv 20.68 255.26s 3312M

Deeplnv+KDCI | 34.84 (+14.16) 258.51s (+1.27%) 3316M (+0.12%)
DFND 42.64 129.16s 4196M

DFND+KDCI | 49.54 (+6.90) 133.42s (+3.30%) 4198M (+0.05%)

Table 3. The accuracy (%) on ImageNet dataset. “—"" denotes the
teacher’s (left) and student’s (right) backbone pair.

Settings | resnet-50 — resnet-18 | resnet-50 — mobilenetv2
Fast 5345 43.02
Fast+KDCI 58.24 (+4.79) 50.12 (+7.10)
Deeplnv 51.36 40.25
Deeplnv+KDCI 55.27 (+3.91) 46.24 (+5.99)
DFND 42.82 16.03
DFND+KDCI 51.26 (+8.44) 34.32 (+18.29)




4. Experimental Results

Ablation study about prior information

Table 4. Ablation studies about the prior information F'(z) = Ei\;l NiziP(z;) in Eq. (4). The results include (1) original F'(z), (2)

random weight coefficient )\;, (3) random confounder dictionary z;, and (4) without (w/o) prototype proportion P(z;).

Settings | (1) Original F(z) | (2) Random ), | (3) Random z; | (4) wlo P(z;)

Methods Fast Deeplnv  DFEND Fast Deeplnv DFND Fast Deeplnv DFND Fast Deeplnv DEFND
CIFAR-10 94.56 93.67 95.38 93.92 91.56 95.28 93.35 91.84 94.94 93.70 92.76 495.11
CIFAR-100 | 75.10 74.59 77.09 74.79 72.72 76.86 73.76 72.81 76.14 74.60 72.66 76.97

Ablation study about confounder dictionary

Table 5. Ablation studies about the confounder dictionary Z. “w/o Z” denotes the vanilla version of DFKD methods. “original Z”

denotes the original confounder from the teacher itself. “other Z denotes the confounder from another pre-trained model, i.e., swapping
the confounder from the pre-training teacher models on CIFAR-10 and CIFAR-100 datasets.

Dataset ‘ CIFAR-10 ‘ CIFAR-100
Settings ‘ resnet-34 — resnet-18 ‘ vgg-11 — resnet-18 ‘ resnet-34 — resnet-18 ‘ vgg-11 — resnet-18
VA ‘ w/o Z  original Z  other Z ‘ wlo Z  original Z  other Z ‘ wlo Z  original Z  other Z ‘ wlo Z  original Z  other Z
Fast 94.05 94.56 93.96 90.53 91.16 920,73 74.42 75.10 74.75 67.44 68.97 68.75
Deeplnv 93.26 93.67 93.56 90.36 91.42 91.26 61.32 74.59 73.04 54.13 69.67 68.04

DEND 95.36 95.44 05.41 91.86 92.54 92.34 74.34 77.09 76.97 68.97 T212 TL.97




4. Experimental Results

Visualization results Case study of causal intervention
(b) Fast+KDCI Ground Truth Vanilla Fast w/ KDCI
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sion on ImageNet and Tiny-ImageNet.



5. Conclusion

* To our best knowledge, we are the first to alleviate the dilemma of the distribution
shifts in the DFKD task from a causality-based perspective. Such shifts are regarded as
the harmful confounder, which leads the student to learn misleading knowledge.

* We propose a KDCI framework to restrain the detri mental effect caused by the
confounder and attempt to achieve the de-confounded distillation process. Besides,
KDCI can be easily and flexibly combined with existing generation-based or sampling-
based DFKD paradigms.

* Extensive experiments on the combination with six DFKD methods show that our
KDCI can bring consis tent and significant improvements to existing state-of-the art
models. Particularly, it improves the accuracy of the Deeplnv by up to 15.54% on the
CIFAR-100 dataset.
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