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Contrastive Learning (CL)

Stage 1: Pre-train a general-purpose encoder
using an unlabeled pre-training dataset. (random
cropping mechanism 1s the key to the success)

Stage 2: Train a linear classifier on top of the
model embeddings produced by pre-trained
encoder for a downstream task.
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Motivation

Data poisoning based backdoor attack to contrastive learning
(CL): An attacker embeds backdoor into an encoder via injecting
poisoned images 1nto the unlabeled pre-training dataset. A downstream
classifier built based on a backdoored encoder predicts an attacker-
chosen class (called target class) for any 1mage embedded with an
attacker-chosen trigger.
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Adversary Knowledge

The attacker can collect some reference images that include reference
objects from the target class and some unlabeled background images.

Reference image vs Reference object. Background image.
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Key ldea

CL maximizes the feature similarity between two randomly cropped views.
If one view includes a reference object and the other includes the trigger,
then maximizing their feature similarity would learn an encoder that
produces similar feature vectors for the reference object and any trigger-

embedded 1mage.

Poisoned Image

I Maximize
: Feature
ISimilarity
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Similar feature vectors->A downstream classifier would predict the target
class for the reference object and any trigger-embedded 1mage.

IMaximize
| Feature
ISimilarity
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Limitations of Existing Attacks

SSL-Backdoor embeds the trigger directly into a reference image. During
pre-training, two randomly cropped views of a poisoned image are both
from the reference 1image. As a result, the backdoored encoder fails to build
strong correlations between them.

Poisoned
ﬂs
\\ ’ |Max1mlze
| Feature
ISimilarity
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CorruptEncoder

We embed a randomly picked reference object and the trigger into a randomly
picked background mmage. We aim to maximize the probability that two
randomly cropped views of the poisoned image respectively include the
reference object and trigger.

IMaximize
| Feature
ISimilarity
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CorruptEncoder

We theoretically analyze the optimal size of the background image, the
optimal location of the reference object 1n the background image, and the
optimal /ocation of the trigger, which can maximize the above probability.

IMaximize
| Feature
ISimilarity
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CorruptEncoder

(a) Left-right layout (b) Bottom-top layout
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CorruptEncoder+

CorruptEncoder+ uses support poisoned images to pull reference objects and other
images 1n the target class close in the feature space so that the reference object can
be correctly classified by a downstream classifier.

Support Image

Maximize Feature Similarity

-— - - - e . ------
- ~ -
- -
- -~

b
‘Support Poisoned Image



CVPR

..... Y JUNE17 21, 2024

Experimental results

Dataset:

We use a subset of random 100 classes of ImageNet as a pre-training
dataset (ImageNet100-A). We consider four target downstream tasks:
ImageNet100-A, ImageNetl00-B, Pets and Flowers. ImageNet100-B 1s a
subset of another 100 random classes of ImageNet.

Metrics: Clean accuracy (CA) and backdoored accuracy (BA) and Attack
success rate (ASR).

Baselines: SSL-Backdoor, PoisonedEncoder, CTRL.
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Experimental results

Table 1. ASRs (%) of different attacks. SSL-Backdoor [25] : Table 2. ASRs (%) for different target classes when the target

achieves low ASRs, which 1s consistent with their results in FP. . downstream task is ImageNet100-B.
Target Downstr- No SSL- CTRL Poisoned- Corrupt- Target Downstr-  No SSL- CTRL Poisoned- Corrupt-
eam Task Attack Backdoor Encoder Encoder eam Task Attack Backdoor Encoder Encoder
ImageNet100-A | 0.4 5.5 28.8 76.7 96.2 ' Hunting Dog | 0.4 14.3 20.5 53.2 89.9
ImageNet100-B | 0.4 14.3 20.5 53.2 89.9 Ski Mask 0.4 14 27.9 37.6 84.3
Pets 1.5 4.6 35.4 45.8 72.1 Rottweiler 0.3 8 37.8 7.3 90.6
Flowers 0 1 18 44 .4 89 Komondor 0 18.3 19.3 61 99.4

CorruptEncoder 1s more effective than existing attacks.
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Experimental results
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(a) Pre-training dataset size (b) Encoder architecture (c) CL algorithm

CorruptEncoder 1s agnostic to pre-training settings.
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Trlgger (e) Location

The optimal size of the background image and the optimal location of the trigger
achieve the best performance.




Localized Cropping

Viewl View 2

Localized cropping breaks attacks by constraining the two cropped views
to be close to each other.



Localized Cropping

Table 4. Defense results (%). ' indicates an extra clean pre-
training dataset 1s used.

No Attack CorruptEncoder CorruptEncoder+

Defense
CA ASR BA ASR BA ASR
No Defense 60.8 04 61.2 89.9 61.7 97.8
ContrastiveCrop 61.3 04 62.1 90.8 62 98.5
No Other Data Augs [44.2 03 447 69.3 442 75.7
No Random Cropping | 32.4 2.2  31.1 2 31.9 1.5
CompRess (5%)T |49.5 09 494 1.1 499 0.9
CompRess (20%)" [582 09 587 1 58.6 1.1
Localized Cropping [56.2 0.9 56.3 0.9 56.1 0.8
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Thanks for listening!

Code available at https://github.com/jzhang538/CorruptEncoder.



