
Data Poisoning-based Backdoor Attack to
Contrastive Learning
Jinghuai Zhang1 Hongbin Liu2 Jinyuan Jia3 Neil Zhenqiang Gong2
UCLA1 Duke University2 Penn State3

Contrastive Learning (CL)

Stage 1: Pre-train a general-purpose encoder
using an unlabeled pre-training dataset. (random
cropping mechanism is the key to the success)

Stage 2: Train a linear classifier on top of the
model embeddings produced by pre-trained
encoder for a downstream task.

Motivation

Data poisoning based backdoor attack to contrastive learning
(CL): An attacker embeds backdoor into an encoder via injecting
poisoned images into the unlabeled pre-training dataset. A downstream
classifier built based on a backdoored encoder predicts an attacker-
chosen class (called target class) for any image embedded with an
attacker-chosen trigger.

Adversary Knowledge
The attacker can collect some reference images that include reference
objects from the target class and some unlabeled background images.

Reference image vs Reference object. Background image.

CL maximizes the feature similarity between two randomly cropped views.
If one view includes a reference object and the other includes the trigger,
then maximizing their feature similarity would learn an encoder that
produces similar feature vectors for the reference object and any trigger-
embedded image.

Key Idea

Similar feature vectors->A downstream classifier would predict the target
class for the reference object and any trigger-embedded image.

Key Idea

Limitations of Existing Attacks
SSL-Backdoor embeds the trigger directly into a reference image. During
pre-training, two randomly cropped views of a poisoned image are both
from the reference image. As a result, the backdoored encoder fails to build
strong correlations between them.

CorruptEncoder
We embed a randomly picked reference object and the trigger into a randomly
picked background image. We aim to maximize the probability that two
randomly cropped views of the poisoned image respectively include the
reference object and trigger.

CorruptEncoder
We theoretically analyze the optimal size of the background image, the
optimal location of the reference object in the background image, and the
optimal location of the trigger, which can maximize the above probability.

CorruptEncoder

CorruptEncoder+
CorruptEncoder+ uses support poisoned images to pull reference objects and other
images in the target class close in the feature space so that the reference object can
be correctly classified by a downstream classifier.

Experimental results

Dataset:
We use a subset of random 100 classes of ImageNet as a pre-training
dataset (ImageNet100-A). We consider four target downstream tasks:
ImageNet100-A, ImageNet100-B, Pets and Flowers. ImageNet100-B is a
subset of another 100 random classes of ImageNet.

Metrics: Clean accuracy (CA) and backdoored accuracy (BA) and Attack
success rate (ASR).

Baselines: SSL-Backdoor, PoisonedEncoder, CTRL.

CorruptEncoder is more effective than existing attacks.

Experimental results

CorruptEncoder is agnostic to pre-training settings.

Experimental results

Experimental results

The optimal size of the background image and the optimal location of the trigger
achieve the best performance.

Localized Cropping

Localized cropping breaks attacks by constraining the two cropped views
to be close to each other.

Localized Cropping

[1] Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Backdoor attacks on selfsupervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.
[2] Hongbin Liu, Jinyuan Jia, and Neil Zhenqiang Gong. PoisonedEncoder: Poisoning the unlabeled
pre-training data in contrastive learning. In 31st USENIX Security Symposium (USENIX Security 22),
2022.
[3] Changjiang Li, Ren Pang, Zhaohan Xi, Tianyu Du, Shouling Ji, Yuan Yao, and Ting Wang.
Demystifying self-supervised trojan attacks. arXiv preprint arXiv:2210.07346, 2022.

Reference

Thanks for listening!

Code available at https://github.com/jzhang538/CorruptEncoder.

