Riemannian Multinomial Logistics Regression for SPD
Neural Networks

— CVPR 2024 -

Ziheng Chenl, Yue Song?!, Gaowen Liuz, Ramana Rao Kompella2, Xiaojun Wu3, Nicu Sebel

1 University of Trento, Italy
2 Cisco Systems, USA
3 Jiangnan University, China

UNIVERSITA@ 2k %% haln
DI TRENTO /"u\;y ANGNAN UNIVERSITY c I Sco

s S S




atfren]n
CIsco

Applications of SPD Manifolds
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Classification on SPD Neural Networks

Input SPD matrix

BiMap Layer ReEig Layer

LogEig Layer 1> =
. &) @ (-1 Output Layers = 5 as}
Tangent Space: 28 4 LAV AN 5 31818l8 =
X = 2133 = a
RIXPxT |8 |&|O|™ 2
Xo =W.X,W] X, =Umax(el, El)UT X1 = Uj_log(Z,- Z)Uz 2 9]
X, = U, 2,07 X2 = U2 ,U],
SPDNet (Huang et al., 2017) TSMNet (Kobler et al., 2022)

R =T (Ytag(T))

ve=m({un) (w0}
G - ()

Va e J

R

Parameterization: M = ({m), 2.} o)

= Chol (ReLU (Chol (T (s1,9))))

SPD-SRU (Chakraborty et al., 2018)

They rely on approximated spaces

How to build intrinsic classification layers on manifolds?

Huang, Zhiwu, and Luc Van Gool. "A riemannian network for spd matrix learning." AAAI, 2017.
Kobler, Reinmar, et al. "SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG." Neurips, 2022.
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Contributions

SPDMLR:

e A general framework for SPD Multinomial Logistics Regression (MLR) under PEMs

e Specific SPD MLRs under parameterized LCM and LEM

e Anintrinsic theoretical explanation of the most popular LogEig classifier
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MLR Revisiting

Vke{l,...,Cl,ply =k | x) x exp (({ar, ) — bx))

Euclidean MLR: Reformulation into margin distance
to hyperplane

p(y =k | x) o exp(sign({ar, ¥ — px))llax||d(z, Hox pr))
B o, =10 € R® aday 00— pph =0}

Gyro SPD MLR: « Requires gyro vector structures

« Relies on gyro distance, instead of geodesic distance
» Solves formulation case by case

Our SPD MLR:
* Focus on Pullback Euclideam Metrics (PEMs)

* Only needs Riemannian geometry
* Relies on geodesic distance
« Proposes a general formulation for PEMs

Nguyen, Xuan Son, and Shuo Yang. "Building neural networks on matrix manifolds: A Gyrovector space approach." ICML, 2023.
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SPD MLR under PEMs

From Euclidean to SPD

p(y =k | ®) < exp(sign({ak, x — pr))||laxl|d(x, Hay py))  Happo = {z €R™: {ar,z — p) = 0}

Riemannian reformulation

Definition 3.1 (SPD hyperplanes). Given P € S}, A € TpS?_ \{0}, we define the SPD hyperplane as
Hap={S €8}, :gp(Logp 5, 4) = (Logp 5, A)p = 0}, (12)

where P and A are referred to as shift and normal matrices, respectively.

Definition 3.2 (SPD MLR). SPD MLR is defined as
p(y = k| S) o exp(sign((Ag, Logp, (5)) p,)IIAxllp,d(S, Ha, p): 13)

where P, € ST, A, € Tp, S} \{0}. (-,-) p, = gp,.and ||| p, is the norm on T’p, S , induced by g at Py, and Ha, p,isa
margin hyperplane in S} | as defined in Eq. (12). d(S, H., p, ) denotes the margin distance between S and SPD hyperplane
Hy «.P,» Which is formulated as:
d(S7'FIAkPk)) = inf d(S7Q)7 (14)
QEH 4, P,

where d(.5, Q) is the geodesic distance induced by g.

Proposition 3.3 (Submanifolds). The SPD hyperplane (as defined in Eq. (12)) under any geometrically complete Riemannian
metric g is a regular submanifold of SPD manifolds.

Submanifolds are natural generalizations of the Euclidean hyperplanes.
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SPD MLR under PEMs

Margin distance and MLR

Lemma 3.5. Given a PEM g, the margin distance defined in Eq. (14) has a closed-form solution:

d(S.Ha, p,)) = d(9(S), Hy, p, (Ar),6(Py)):

Margin distance: _ 1(8(S) = &(Pr), éx.p. (A1) (16)
| Akl Py ’

where | - | is the absolute value.

Lemma 3.6. Given a PEM, any parallel transportation is equivalent to the differential map of a left translation and vice
versa.

Optm Ization: Lemma 3.7. Given two fixed SPD matrices Q1,Qy € ST ., we have the following equivalence for parallel transportations
under a PEM, : .
VAl,k € TQ1$:+, E|!A2,k € TQQS?_+,

s - (18)
st.0Q»p.(Ark) = TQa— P (A2,k).
Theorem 3.8 (SPD MLR under a PEM). Under any PEM, SPD MLR and SPD hyperplane is
) ply =k | S) o< exp((¢(S) — $(Pr), dw,1(AR))), (19)
General formulation: Hi p ={5 €8Ty : ($(S) — $(Pr), bu,1(Ar)) = 0}, (20)

where Ay, € TrS?, /{0} = 8" /{0} is a symmetric matrix, and Py € S, is an SPD matrix.
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MLR on the parameterized LEM and LCM

Corollary 4.1 (SPD MLRs under the deformed LEM and LCM). The SPD MLRs under (c, 3)-LEM is
p(y = k| S) o exp [(mlog(s) — mlog(Py), 4g)@?)] @1
where Ay, € 178t = 8™ and P, € ST ,. The SPD MLRs under (0)-LCM is

o =1 8) xexp | (LK) = Ee] + [DIog(DR) ~ Diow(@(L)] Lix] + 5D(AwY)] . 22)

where K = Chol(S9), L = Chol(P?), and D(Ay) denotes a diagonal matrix with diagonal elements of Ay,.

a, f)-LEM (6)-LCM

<

Visualization of SPD hyperplane

Figure 1. Conceptual illustration of SPD hyperplanes induced by
(e, B)-LEM and (0)-LCM. In each subfigure, the black dots are
symmetric positive semi-definite (SPSD) matrices, denoting the
boundary of S7 , , while the blue, red, and yellow dots denote three
SPD hyperplanes.
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Experiments

Backbone ‘ Classifier [20,16.,8] [20,16,14,12,10,8] Backbone ‘ Classifier ‘ [93,30] [93,70,30]  [93,70,50,30]
LogEig MLR | 92.88+1.05 93.47+0.45 LogEig MLR | 57.42+1.31 60.69+£0.66  60.76+0.80
Gyro-AIM | 94.53+0.95 94.32+0.94 Gyro-AIM 58.07£0.64 60.72+0.62  61.14+0.94

|

Gy = o 1,0)LEM | 57.02£0.75 61.34%0.62  60.780.86

SFDINet ‘ (1,1)-LEM ‘95.64i0.83 95.87+0.58 SPDNet | (LO) |

T, |50 HIoRsies (D-[LCM | 62.04£1.05 62112211  62.8942.09
‘ 28 ‘ 5950, 650, (0.5)-LCM

05)LCM | 94595082  95.16:0.67 65.66£0.73  65.79+0.63  65.71x0.75

Table 3. Results of SPDNet with different classifiers on the Radar 1able 4. Results of SPDNet with different classifiers on the

dataset. HDMO5 dataset.
Backbone | Classifier | Inter-session Inter-subject Hinss2021
LogEig MLR | 53.83:9.77  49.68+7.88 Methods Radar HDMOS jnter-session  inter-subject
Ggpgelll | BEe UGl Baseline 136 1.95 0.18 8.31
spopswiEy | LOTEM | 016D OldlH 8 MLR Gyro-AIM 175 31.64 0.38 133
(1)LCM | 557148.57  51.60+8.43 MLR.LEM is 47 024 10.13
(15-LCM | 56.43:8.79  51.65+5.90 MLRLCM L35 349 018 s

Table 5. Results of SPDDSMBN with different classifiers on the . .. .
Hinss2021 dataset under inter-subject and inter-session scenarios. Table 6. Comparison of training efficiency (s/epoch) of SPDNet

The presented results are the ones of balanced accuracy under the .(SPPD'SMBN‘) under different classifiers. The most efficient MLR
leaving 5% out cross-validation scenario. is highlighted in bold.

Huang, Zhiwu, and Luc Van Gool. "A riemannian network for spd matrix learning." AAAI, 2017.
Kobler, Reinmar, et al. "SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG." Neurips, 2022. 9
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