

EGTR: Extracting Graph from Transformer for Scene Graph Generation

Jinbae Im¹, JeongYeon Nam¹, Nokyung Park^{1, 2, 3}, Hyungmin Lee², Seunghyun Park¹

¹NAVER Cloud AI, ²NAVER, ³Korea University

Preliminary: Scene Graph Generation (SGG)

- Scene graph
 - $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$
- Nodes: objects ($v_i \in \mathcal{V}$)
 - $v_i^c \in C_v$: object category label
 - $v_i^b \in R^4$: box coordinates
- Edges: relations $(e_j \in \mathcal{E})$
 - e_j represents the *j*-th triplet (s_j, p_j, o_j)
 - $s_j \in \mathcal{V} \& o_j \in \mathcal{V}$: related objects
 - $p_j^c \in C_p$: relation category label

Preliminary: DETR

- One-stage (end-to-end) object detection model
- Each object query is used to detect each object
 - The number of object query (N) is set large enough to cover all objects
 - Bipartite matching between object queries and ground-truth objects is used

SGG approaches

(b) One-stage approaches

(a) Object-Triplet Detection Models (e.g., ReITR, SGTR)

(b) Triplet Detection Models

(e.g., Iterative SGG, Structured Sparse R-CNN)

(a) Object-Triplet Detection Models (e.g., ReITR, SGTR)

(b) Triplet Detection Models

(e.g., Iterative SGG, Structured Sparse R-CNN)

(a) Object-Triplet Detection Models (e.g., ReITR, SGTR)

(b) Triplet Detection Models

(e.g., Iterative SGG, Structured Sparse R-CNN)

(a) Object-Triplet Detection Models (e.g., ReITR, SGTR)

(b) Triplet Detection Models

(e.g., Iterative SGG, Structured Sparse R-CNN)

Motivation

Motivation

Scene Graph

Attention Graph

The overall architecture of EGTR

The overall architecture of EGTR

- $R_a^l \in R^{N \times N \times 2d_{\text{model}}} = [Q^l W_s^l; K^l W_o^l]$
 - $Q^{l} \in R^{N \times d_{\text{model}}}$: attention queries of the *l*-th layer
 - $K^{l} \in \mathbb{R}^{N \times d_{\text{model}}}$: attention keys of the *l*-th layer

- $R_z \in R^{N \times N \times 2d_{\text{model}}} = [Z^l W_s; Z^l W_o]$
 - $Z^l \in \mathbb{R}^{N \times d_{\text{model}}}$: the last layer representations of the object queries

The overall architecture of EGTR

- $\hat{G} \in \mathbb{R}^{N \times N \times |C_p|} = \sigma \left(\text{MLP}_{\text{rel}} \left(\sum_{l=1}^{L} g_a^l * R_a^l + g_z * R_z \right) \right)$
 - $g_a^l \in \mathbb{R}^{N \times N \times 1} = \sigma(\mathbb{R}_a^l W_G), g_z \in \mathbb{R}^{N \times N \times 1} = \sigma(\mathbb{R}_z W_G)$
 - MLP_{rel}: a three-layer perceptron with ReLU activation

Example of relation graph G

(1) Adaptive smoothing

- Smooth the relation labels based on the object detection performance

$$u_i = \sigma \left(\text{cost}_i - \text{cost}_{\min} + \sigma^{-1}(\alpha) \right)$$
$$G_{ijk} = (1 - u_i)(1 - u_j)G_{ijk}$$

- *u*: uncertainty of each object query ([α , 1))
- cost: bipartite matching cost of each object query
- α : minimum uncertainty (hyper-parameter)
- G_{ijk} : k-th predicate category between subject entity v_i and object entity v_j

(2) Sampling methodology

- Density is only 10^{-14} when N is set to 200 for Visual Genome
- Sample hard negatives & non-matchings
 - based on the predicted relation score
 - Choose the top $k_{neg} \times |\varepsilon|$ most challenging negatives
 - Choose the top $k_{non} \times |\varepsilon|$ most challenging non-matchings
 - ($|\varepsilon|$ denotes the number of the ground-truth edges)

(3) Connectivity prediction

- Auxiliary task for relation extraction

Multi-task Learning

$$\mathcal{L} = \mathcal{L}_{\mathrm{od}} + \lambda_{\mathrm{rel}} \mathcal{L}_{\mathrm{rel}} + \lambda_{\mathrm{con}} \mathcal{L}_{\mathrm{con}}$$

- \mathcal{L}_{od} : object detection loss (proposed in DETR)
- \mathcal{L}_{rel} : relation extraction loss (binary cross-entropy)
- \mathcal{L}_{con} : connectivity prediction loss (binary cross-entropy)

Datasets and Evaluation Settings

(1) Visual Genome: 150 object categories & 50 relation categories

- efficiency: # parameters & FPS
- object detection: AP50
- triplet detection
 - Recall@k (R@k): class agnostic measure
 - mean Recall@k (mR@k): aggregates the recalls for each predicate category

(2) Open Image V6: 601 object categories & 30 relation categories

- score: $0.2 \times \text{micro-R}@50 + 0.4 \times \text{wmAP}_{rel} + 0.4 \times \text{wmAP}_{phr}$
 - micro-R@50
 - $wmAP_{rel}$: predicting boxes of subject entity and object entity separately
 - wmAP_{phr}: predicting a union box of subject entity and object entity

Implementation Details

- We employ Deformable DETR with ResNet-50 as a backbone
 - Deformable DETR improves the convergence speed of the DETR
 - Our approach can be extended to any object detector

that incorporates self-attention mechanisms between object queries

- The number of object queries (N): 200
- Loss coefficients
 - $\lambda_{\rm rel}$: 15
 - λ_{con} : 30 (Visual Genome) / 90 (Open Image V6)
- Smoothing minimum uncertainty (α): 10^{-14} / Sampling ratio ($k_{\text{neg}} = k_{\text{non}}$): 80

Quantitative Results

(1) Visual Genome

	Model	# params (M)	FPS	AP50	R@20	R@ 50	R@ 100	mR@20	mR@50	mR@100
	IMP (EBM) [34, 42]	322.2	2.0	28.1	18.1	25.9	31.2	2.8	4.2	5.4
	VTransE [47]	312.3	3.5	-	24.5	31.3	35.5	5.1	6.8	8.0
e l	Motifs [45]	369.9	1.9	28.1	25.1	32.1	36.9	4.1	5.5	6.8
stag	VCTree [36]	361.5	0.8	28.1	24.8	31.8	36.1	4.9	6.6	7.7
-0-0	VCTree (TDE) [36, 37]	361.3	0.8	28.1	14.0	19.4	23.2	6.9	9.3	11.1
₹	VCTree (EBM) [34, 36]	372.5	-	28.1	24.2	31.4	35.9	5.7	7 7.7	9.1
	GPS-Net [20]	-	-	-	-	31.1	35.9	-	6.7	8.6
	BGNN [16]	341.9	1.7	29.0	23.3	31.0	35.8	7.5	10.7	12.6
	FCSGG [21]	87.1	6.0	<u>28.5</u>	16.1	21.3	25.1	2.7	3.6	4.2
	RelTR [7]	<u>63.7</u>	<u>13.4</u>	26.4	21.2	27.5	-	6.8	10.8	-
	SGTR [17]	117.1	6.2	25.4	-	24.6	28.4	-	12.0	15.2
	Relationformer [32]	92.9	8.5	26.3	22.2	28.4	31.3	4.6	9.3	10.7
age	Iterative SGG [9]	93.5	6.0	27.7†	-	29.7	32.1	-	8.0	8.8
-sti	SSR-CNN [38]	274.3	4.0	23.8†	25.8	32.7	36.9	6.1	8.4	10.0
one	SSR-CNN [38] $_{LA,\tau=0.3}$	274.3	4.0	23.8†	18.4	23.3	26.5	13.5	17.9	<u>21.4</u>
	EGTR (Ours)	42.5	14.7	30.8	<u>23.5</u>	<u>30.2</u>	<u>34.3</u>	5.5	7.9	10.1
	EGTR (Ours) $_{LA,\tau=0.7}$	42.5	14.7	30.8	15.7	18.7	20.5	<u>12.1</u>	<u>17.8</u>	21.7
	EGTR (Ours) $_{LA,\tau=0.5}$	42.5	14.7	30.8	19.7	24.2	26.7	11.0	17.1	<u>21.4</u>
	EGTR (Ours) $_{LA,\tau=0.3}$	42.5	14.7	30.8	22.4	28.2	31.7	8.8	14.0	18.3

Quantitative Results

(2) Open Image V6

Model	score	micro-R@50	wmAP _{rel}	wmAP _{phr}
Motifs [45]	38.9	71.6	29.9	31.6
VCTree [36]	40.2	74.1	34.2	33.1
GPS-Net [20]	41.7	74.8	32.9	34.0
BGNN [16]	42.1	75.0	33.5	34.2
RelTR [7]	43.0	71.7	34.2	37.5
SGTR [17]	42.3	59.9	37.0	38.7
SSR-CNN [38]	49.4	76.7	<u>41.5</u>	43.6
EGTR (Ours)	<u>48.6</u>	<u>75.0</u>	42.0	<u>41.9</u>

Qualitative Results

(1) Ablation study – relation source

	R_a^l source	R^l_a	R_{z}	R@ 50	mR@50
1	Q^l & K^l	\checkmark	\checkmark	30.2	7.9
2	Z^l	\checkmark	\checkmark	29.6	7.4
3	-		\checkmark	29.9	7.6
4	Q^l & K^l	\checkmark		29.8	7.7

- 1): all attention layers & final hidden layer
- ②: all hidden layers
- ③: final hidden layer
- ④: all attention layers

(1) Ablation study – pairwise function $(R_a^l = f(Q^l, K^l))$

Pairwise function	<pre># Params(M)</pre>	R@50	mR@50
dot product attention	41.3	25.9	6.2
dot product	41.3	27.4	6.8
Hadamard product	41.5	29.1	7.2
sum	41.5	29.5	7.3
concat	41.6	29.9	7.9

- dot product attention & dot product: $R^{N \times N \times (h \times 1)}$ (*h* denotes the number of self-attention heads)

- Hadamard product & sum: $R^{N \times N \times (h \times d_{head} = d_{model})}$
- concat: $R^{N \times N \times (h \times 2d_{head} = 2d_{model})}$

(1) Ablation study – proposed techniques

adaptive smoothing	$\mathcal{L}_{ ext{con}}$	sampling	R@ 50	mR@50
			26.6	5.3
\checkmark			28.3	6.5
	\checkmark		29.6	7.0
		\checkmark	28.9	7.1
\checkmark	\checkmark	\checkmark	30.2	7.9

(2) Object detection

Model	AP50	AP50 _{rel}	AP50 _{no-rel}
Iterative SGG [9]†	27.7	24.3	7.8
SSR-CNN [38]†	23.8	20.2	7.4
EGTR (Ours)	30.8	24.3	10.7

AP50 for two subsets of objects

Detected subjects and objects

(3) Gated sum

Conclusion

- **EGTR** that generates scene graphs efficiently and effectively by utilizing the *multi-head self-attention by-products* from the object detector
- Adaptive smoothing that helps *multi-task learning* of object detection and relation extraction
- Connectivity prediction as an *auxiliary* task of relation extraction
- The highest object detection performance and competitive triplet detection capabilities with **the highest efficiency**

Poster Session 17:15 ~ 18:45 Arch 4A-E Poster #408

Email: jinbae.im@navercorp.com

Github: https://github.com/naver-ai/egtr