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- Medical image registration

* Image registration finds a spatial transformation between a pair of fixed and moving 1mages,
through which the moving image can be warped to spatially align with the fixed image.

» Affine registration is firstly performed to eliminate the linear and large spatial misalignment
between images. Then, deformable registration is performed to reduce the local non-rigid
deformations, which is the main research focus for medical image registration.
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- Vision backbones for deformable registration: From CNN to Transformer

*  CNN backbone: VoxelMorph, Diffeomorphic VoxelMorph
*  Transformer backbone: TransMorph, Swin-VoxelMorph, TransMatch
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- Architectures for deformable registration: From direct registration to progressive
(coarse-to-fine) registration

*  Progressive registration architectures perform multiple steps of coarse-to-fine registration.

» [terative coarse-to-fine methods use cascaded networks or run a single network with multiple
iterations to perform the multiple registration steps, such as RCN, LapIRN, ULAE-net.

* Non-iterative coarse-to-fine methods perform multiple registration steps by running a single
pyramid network for a single iteration, such as NICE-Net, NICE-Trans, ModeT.
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- Vision backbones based on Multi-layer Perceptrons (MLPs)

*  MLPs capture long-range dependence without relying on self-attention, showing advantages
over transformers on computation and memory consumption.

* MLPs can process high-resolution image feature maps to capture fine-grained long-range
dependence at full resolution, which is crucial for medical image dense prediction (Ref:
arXiv:2311.16707, Full-resolution MLPs Empower Medical Dense Prediction)
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Transformer cannot capture fine-grained long-range dependence at the full image resolution.
This limits the registration performance as deformable registration necessitates precise dense

correspondence between each image pixel.
MLPs enable the feasibility of modeling fine-grained long-range dependence at full resolution.
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- MLPs have not been extensively explored for image registration and lack the consideration of
inductive bias crucial for medical image registration tasks.

* Existing MLP-based models tend to simply stack MLP blocks as the feature-extraction
encoder and have not been optimized in the state-of-the-art coarse-to-fine architecture for
progressive medical image registration.

*  Existing MLP blocks (1) tend to mix spatial information globally and are insensitive for local-
range dependence, and (i1) do not explicitly model the local correlations between features.
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CorrMLP: a correlation-aware coarse-to-fine MLP-based network for deformable registration
* (CNN-based hierarchical encoder to extract two feature pyramids
e Correlation-aware coarse-to-fine registration decoder based on our CMW-MLP blocks

* A novel correlation-aware coarse-to-fine registration architecture that considers both image-
level and step-level correlations
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CMW-MLP: correlation-aware multi-window MLP block

« Take two sets of feature maps and explore the potential correspondence between them.
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A 3D correlation layer to calculate the local correlations between two feature maps, followed
by a multi-window MLP module to capture correlation-aware multi-range dependence to
handle both large and small local deformations.
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Summary of Technical Contributions

— The technical contributions are three-fold:

*  We investigate in leveraging MLPs for deformable medical image registration and propose
the CorrMLP, to the best of our knowledge, which is the first MLP-based coarse-to-fine
registration network.

* We propose the CMW-MLP block, an MLP block specifically optimized for deformable
registration to capture correlation-aware multi-range dependence.

*  We propose a novel correlation-aware coarse-to-fine registration architecture that considers
both image-level and step-level correlations to provide enriched contextual information to
guide each registration step.

The University of Sydney Page 10
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We evaluated our CorrMLP with two well-benchmarked deformable image registration tasks (3D
inter-patient brain image registration and 4D intra-patient cardiac image registration), involving
seven public medical datasets:

— Inter-patient brain image registration

* Training: 2,656 MRI images acquired from ADNI, ABIDE, ADHD, and IXI datasets
* Testing: Mindboggle and Buckner datasets

- Intra-patient cardiac image registration

* Training: 100 cine-MRI images from the official training set of ACDC dataset
* Testing: 50 cine-MRI images from the official testing set of ACDC dataset

The University of Sydney Page 11
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Table 1 and Table 2 present the quantitative comparison for brain and cardiac image registration:
e CorrMLP achieved significantly higher DSCs without sacrificing transformation smoothness.
e The runtime of CorrMLP is similar to existing deep registration methods, allowing real-time

registration with GPUs (<0.5s for one image pair).

Method ACDC Runtime
etho DSCT NID (%) 4/ CPU () GPU (s)
Method Mindboggle dataset Buckner dataset Runtime Before registration 0.590* / / /
DSCT NID(%)4| DSCT NID(%)!| CPU() GPU(s) VoxelMorph [7] | 0754 0440 | 036  0.02
SN Before re istraﬁOHT — gg‘;z 1 9/56 8‘5‘23 1 8/74 34/2 - j Swin-VoxelMorph [13][ 0.763° 0412 | 091  0.08
Y. raditional E R 5 X *
NiftyReg [18] Traditional 0.569° 2364 | 0611° 2175 159 / ?rz’:lssﬁz:‘c’ﬁ [[11;] 8'322* 8'22? g'gg 8'82
VoxelMorph [7] CNN, direct 0.552° 2.532 0.589° 2.220 2.84 0.23 AL ' '
Swin-VoxelMorph [13] Transformer, direct 0566 2254 | 0605 2016 5.67 0.52 MAXIM [29] 0.785" 0437 | 182  0.17
TransMorph [12] Transformer, direct 0.571° 2.400 0.608" 2.183 3.68 0.35 MAXIMx3 [29] 0.788° 0716 | 545  0.51
TransMatch [15] Transformer, direct 0.578" 2.036 0.622" 1.995 3.06 0.28 LapIRN [9] 0.790"  0.454 0.77 0.06
LapIRN [9] CNN, coarse-to-fine 0.605" 2.164 0.632° 2.112 497 0.46 ULAE-net [35] 0792° 0447 | 086  0.07
e | S oment | s o | Gee  oies | der  ga | | DTl 07T 04w f 075 006
Dual- et++ | coarse-to-fine .608" : 636" . K k *
SDHNet [36] CNN, coarse-to-fine 0.598" 1.872 0.634" 1.843 3.24 0.26 1\?11(3211_51{\;;[??1]] 8'222* g'izg g':g 8'82
NICE-Net [11] CNN, coarse-to-fine 0.618" 2.043 0.643" 1.963 3.55 032 o5 0. : :
NICE-Trans [22] Transformer, coarse-to-fine | 0.625" 2.324 0.649" 2277 4.02 0.37 NICE-Trans [22] | 0.799° 0473 | 0.64  0.05
CorrtMLP (Ours) MLP, coarse-to-fine 0.642 1.821 0.661 1.788 5.48 0.49 CorrtMLP (Ours) 0810 0389 | 083  0.07

Table 1: Quantitative comparison for brain image registration. The best results in each dataset are in bold. T: the higher is better. : the Table 2: Quantitative comparison for cardiac image registration.
lower is better. *: P<0.05, in comparison to CorrMLP.

The University of Sydney

The best results are in bold. T: the higher is better. : the” werds
better. *: P<0.05, in comparison to CorrMLP. F ) )
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Table 3 presents an analysis on architecture designs:

* By using MLP block in Unet-style architecture, our
baseline MLPMorph has outperformed VoxelMorph
and TransMorph by a large margin, demonstrating

the superiority of MLPs on deformable image Method Mindboggle Buckner ACDC

: ) ) VoxelMorph [7] 0552 0589  0.754
registration: MLPs can capture _ﬁne-gralned lopg- TransMorph [12] 0571 0608 0768
range dependence at high-resolution features, which MLPMorph (Ours) 0.604 0632  0.780

is crucial for finding precise dense correspondence. No correlation 0628  0.650  0.800

. . . Only image-level correlation| 0.637 0.657  0.806

* By employing MLP blocks in our correlation-aware | only step-level correlation | 0.634  0.655  0.805
coarse-to-fine architecture, CorrMLP outperformed CortMLP (Ours) 0642  0.661  0.810

MLPMorph by a large margin. Moreover, separately  Table 3: DSC results of the ablation study on architecture designs.
removing either image- or step-level correlation Thebestresults are in bold.
information degraded the registration performance.

The University of Sydney Page 13
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Table 4 presents an analysis on MLP blocks:

* Replacing the CMW-MLP block with five different
existing MLP blocks all resulted in lower DSCs,

. . MLP block Mindboggle Buckner ACDC

showing the effectiveness of our CMW-MLP block. S™MLP [26] o oeu 0594

 Even when the correlation layer was removed, the sMLP [27] 0622  0.645  0.794
: " Hire-MLP [28 . : :

MW-MLP block still outperformed the five existing SwiMLP [[20]] gggg 8232 8;3?

MLP blocks, implying that our multi-window MLP Multi-axis gated MLP [29] | 0.625 0647  0.798

design is beneficial for deformable registration. MW-MLP (Ours) 0.628  0.650  0.800

. . . No 3x3x3 MLP branch 0.639 0.657 0.808

 Removing MLP branches degraded the registration No 5x5x5 MLP branch 0635 0654 0805

performance; No further improvement by adding No 7x7x7 MLP branch 0.637 0655  0.806

an extra MLP branch with 9 X9 X9 window size. CMW-MLP (Ours) 0642 0661 0.810

This suggests that a 7 X7 X7 MLP branch has been
sufficient to capture large deformations, while the
3X3X3 and 5X5X5 MLP branches are crucial to
capture subtle deformations.

The University of Sydney

Table 4: DSC results of the ablation study on MLP blocks. The

best results are in bold.
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— In this study, we have shown the effectiveness of MLPs for deformable medical

image registration by developing the first MLP-based coarse-to-fine registration
network (CorrMLP).

- Our study suggests that MLP could be a superior alternative to popular transformers
for its advantage on modeling fine-grained long-range dependence at full resolution.

- We suggest that the proposed CMW-MLP block could serve as a general block
applying to various network architectures for image registration tasks to leverage its
capability to capture correlation-aware multi-range dependence among features.

The University of Sydney que‘l 5



Thank You
Code: https://github.com /MungoMeng /Registration-CorrMLP
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