

Flowing from Words to Pixels: A Noise-Free Framework for Cross-Modality Evolution

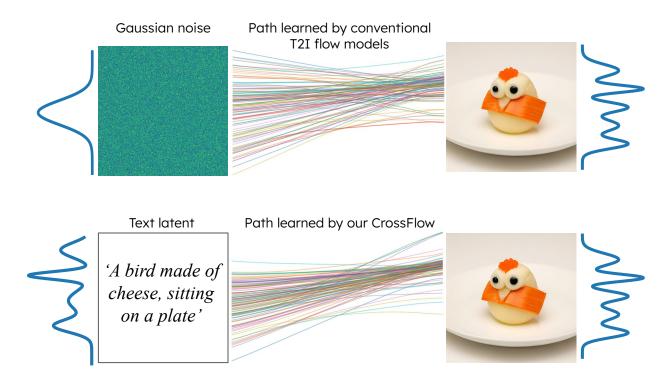
Qihao Liu^{1,2}, Xi Yin¹, Alan Yuille², Andrew Brown¹, Mannat Singh²

¹ Meta GenAI ² Johns Hopkins University

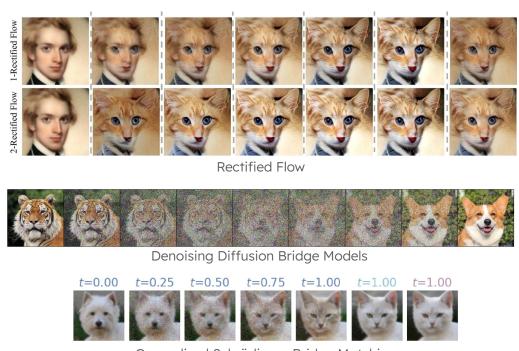
CVPR 2025 Highlight

Motivation

Diffusion models & Flow Matching models



Stable Diffusion 3 Movie Gen


Motivation

Starting from Gaussian noise vs. from correlated distribution

Related Work

Mapping between two similar intra-modal distributions (e.g., face to face)

Generalized Schrödinger Bridge Matching

CrossFlow

Learning a direct mapping between modalities with flow matching

'A oil painting of an ancient cat with yellow eyes, wearing a black wizard hat, red bow tie, and dark cloak.'

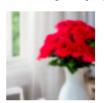
'A white terrier wearing black headphones and speaking into a microphone in front of a computer'

'Portrait of two anthropomorphic rabbits standing side by side, the left one is wearing a white coat and the right one is wearing a red coat holding a wooden weapon'

'A Shiba Inu dog riding a red motorcycle in the park, wearing sunglasses'

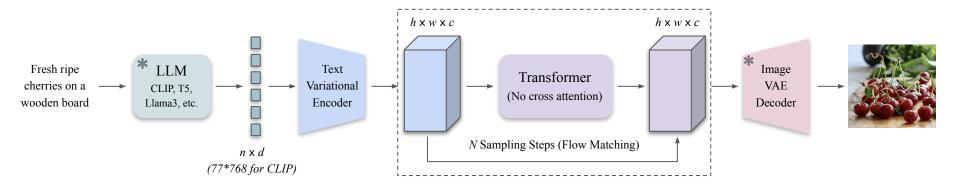
'A bird made of cheese, sitting on a plate'

'A photo of butterfly standing on a yellow and white flower in the garden'


"A classic breakfast of egg and sausages on a white plate with two cups of coffee"

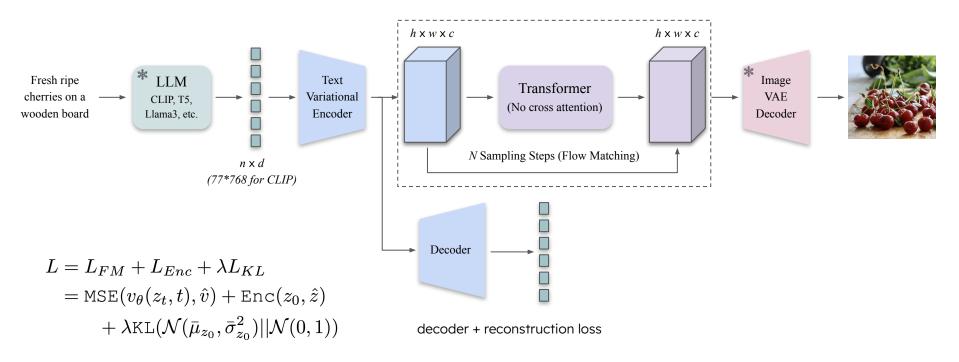
From image to text (image captioning)

From image to depth (monocular depth estimation)

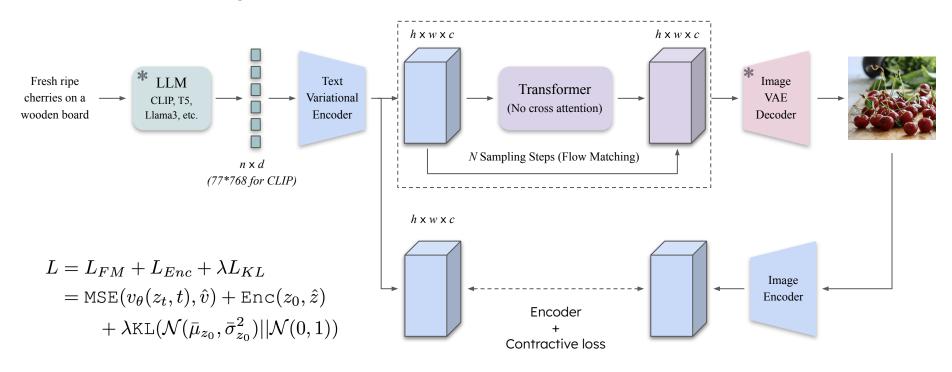

From low-resolution to high-resolution image (image super-resolution)

(b) CrossFlow for various tasks

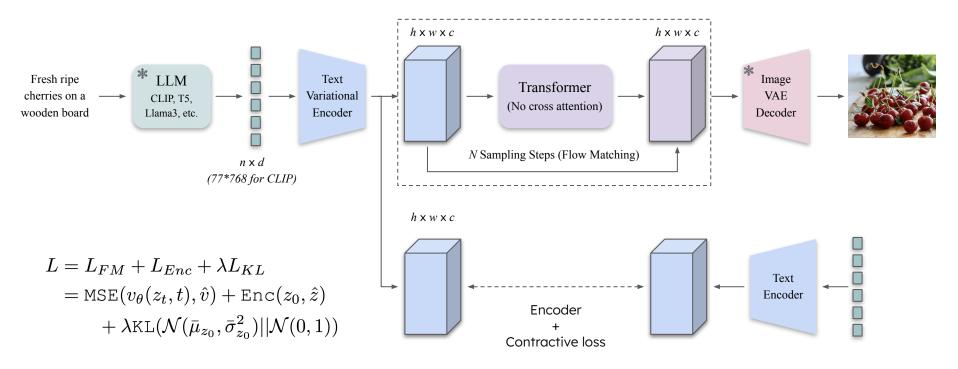
(a) Directly evolving text into images for Text-to-Image generation


Key: encoding the source modality data into a regularized distribution

- Variational Encoder


Key: encoding the source modality data into a regularized distribution

Joint training with VE loss


Key: encoding the source modality data into a regularized distribution

Joint training with VE loss

Key: encoding the source modality data into a regularized distribution

- Joint training with VE loss

Classifier-free guidance

- Standard CFG can only be applied to methods with additional conditioning input c

$$\tilde{v}_{\theta}(z_t, c) = \omega v_{\theta}(z_t, c) + (1 - \omega) v_{\theta}(z_t)$$

- CFG with an indicator $1_c \in \{0,1\}$

$$\tilde{v}_{\theta}(z_t) = \omega v_{\theta}(z_t, 1_c = 1) + (1 - \omega)v_{\theta}(z_t, 1_c = 0)$$

'a cat playing chess'
Indicator 1c= 0

Text-to-image generation

Method	#Params (B)	#Steps (K)	FID ↓	$\textbf{CLIP}\!\uparrow$
Standard FM (Base	line) 1.04	300	10.79	0.29
CrossFlow (Ours)	0.95	300	10.13	0.29

Table 1. Comparison between our CrossFlow and standard flow matching with cross-attention.

Method	#Params.	FID-30K ↓ zero-shot	GenEval ↑ score	
DALL-E [72]	12.0B	27.50	-	
GLIDE [63]	5.0B	12.24	-	
LDM [77]	1.4B	12.63	-	
DALL: E 2 [73]	6.5B	10.39	0.52	
LDMv1.5 [77]	0.9B	9.62	0.43	
Imagen [78]	3.0B	7.27	-	
RAPHAEL [92]	3.0B	6.61	-	
PixArt- α [11]	0.6B	7.32	0.48	
LDMv3 (512 ²) [23]	8.0B	-	0.68	
CrossFlow	0.95B	9.63	0.55	
CrossFlow (Sin-Cos)	0.95B	8.95	0.57	

Table 2. Comparison with recent T2I models.

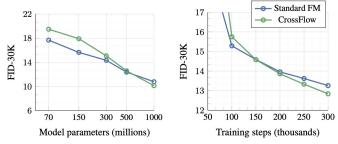


Figure 3. Performance vs. Model Parameters and Iterations.

Text encoder		FID ↓	CLIP 1		Loss		FID↓	CLIP ↑
Encoder		66.65	0.20		T-T Rec	on.	40.78	0.23
Encoder + noise	,	59.91	0.21		T-T Cor	ıtrast.	34.67	0.24
Variational Ence	<u>oder</u>	40.78	0.23		I-T Con	trast.	33.41	0.24
(a) Varia	tional	Encode	er *	(b) Text VE loss*				ss*
Method	FID	↓ CI	.IP↑	M	odel		$\mathbf{FID}\downarrow$	$\mathbf{CLIP} \uparrow$
No guidance	33.4	1 0	.24	C	LIP (0.4B))	24.33	0.26
AG	26.3	6 0	.25	T:	5-XXL (1	ĪB)	22.28	0.27
CFG indicator	24.3	<u>33</u> <u>0</u>	.26	Llama3 (7B)		21.20	0.27	
(c) CFG with indicator (d) Language Model				el				
Train strategy FID \downarrow CLIP \uparrow								
2-stage separate training				32.55	0.2	4		
Joint training			24.33	0.2	26			
2-stage w/ joint finetuning			g	23.79	0.2	.6		
(e) Training strategy								

Table 3. **Ablation study** on Text Variational Encoder, training objective, CFG, language models, and training strategy. We conduct ablation study on our smallest model (70M), reporting *zero-shot* FID-10K and CLIP scores. Final settings used for CrossFlow are underlined. AG: Autoguidance. *: results without applying CFG.

Text-to-image generation

'a glass of orange juice to the right of a plate with buttered toast on it'

'a teddy bear on a skateboard in times square'

'a painting of a rocket lifting off from the city'

'a teddy bear sitting on a yellow toy pickup truck'

'a black dog is playing chess with a white dog'

'three birds standing on a wire stock'

'five frosted glass bottles'

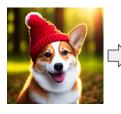
'two cats doing research'

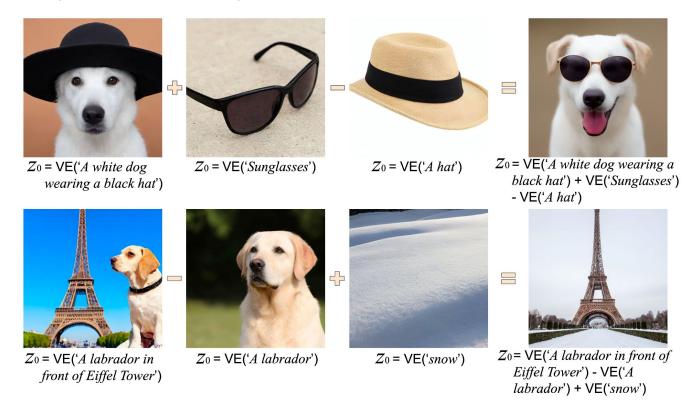
'a close-up of milk pouring into a white bowl against a black background'

'a close-up of the eyes of an owl'

'a black and white landscape photograph of a black tree'

'a cute illustration of a horned owl with a graduation cap and diploma'


Linear interpolation in latent space (z0)



Arithmetic operations in latent space (z0)

Arithmetic operations in latent space (z0)

Arithmetic Operation	Success Rate (%)
Addition	95.3
Subtraction	92.7
Combination	87.5
Overall	91.4

Table 8. Success rate of arithmetic operation on 1,000 prompts from COCO-val.

CrossFlow for various tasks (without task specific architectures)

Image captioning

Method	B@4↑	$\mathbf{M}\uparrow$	$\mathbf{R}\uparrow$	$\mathbf{C}\uparrow$	$\mathbf{S}\uparrow$
MNIC [24]	30.9	27.5	55.6	108.1	21.0
MIR [43]	32.5	27.2	-	109.5	20.6
NAIC-CMAL [28]	35.3	27.3	56.9	115.5	20.8
SATIC [96]	32.9	27.0	-	111.0	20.5
SCD-Net [58]	37.3	28.1	58.0	118.0	21.6
CrossFlow (Ours)	36.4	27.8	57.1	116.2	20.4

Table 4. Image captioning on COCO Karpathy split.

Depth estimation

Method	KITT	ľ	NYUv2		
11204104	AbsRel (\downarrow) δ_1 (\uparrow)		AbsRel (↓)	$\delta_1 \left(\uparrow ight)$	
TransDepth [89]	0.064	0.956	0.106	0.900	
AdaBins [6]	0.058	0.964	0.103	0.903	
DepthFormer [45]	0.052	0.975	0.096	0.921	
BinsFormer [46]	0.052	0.974	0.094	0.925	
DiffusionDepth [18]	0.050	0.977	0.085	0.939	
CrossFlow (Ours)	0.053	0.973	0.094	0.928	

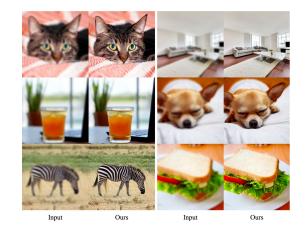

Table 5. Monocular depth estimation on KITTI and NYUv2.

Image super-resolution

Method	FID ↓	$\mathbf{IS}\uparrow$	$\mathbf{PSNR} \uparrow$	$\mathbf{SSIM} \uparrow$
Reference	1.9	240.8	-	-
Regression	15.2	121.1	27.9	0.801
SR3 [75]	5.2	180.1	26.4	0.762
Flow Matching [50]	3.4	200.8	24.7	0.747
CrossFlow (Ours)	3.0	207.2	25.6	0.764

Table 6. **Image super-resolution on the ImageNet validation set.** Compared with standard SR method with flow matching, our

"a cat laying under a blanket on a bed"

Ours

"a banana and three oranges on a table"

"a white bird standing on the shore"

Ours

