

Class-Incremental Learning (CIL)

CIL with pretrained model

Incrementally adapt a pretrained model to tasks composed of new classes, while preventing catastrophic forgetting

Catastrophic forgetting

Forget previously learned knowledge when adapting to new tasks, degrading performance on old classes

Exemplar-free CIL

Does not use **exemplars** — representative samples from previous classes — which are often restricted by privacy concerns

Prototype-based CIL

Classify samples by comparing their features to **prototypes**, which are the average feature vector of each class

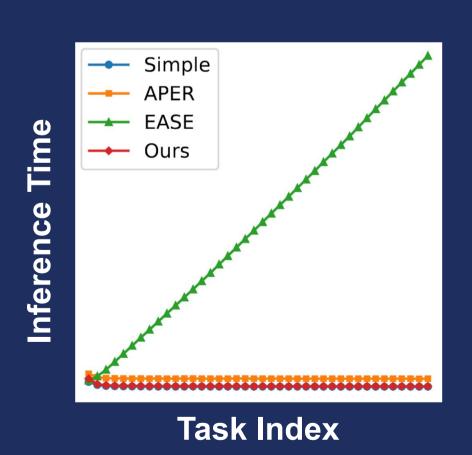
In CIL, prototypes are calculated for each task and stored during subsequent task

Motivation

Inference Scalability

In real-world applications requiring long-term deployment, scalability issue becomes a critical

However, there is a trade-off between scalability and accuracy.



Contributions

Achieved accuracy comparable to SoTA methods while maintaining inference time similar to the fastest approaches

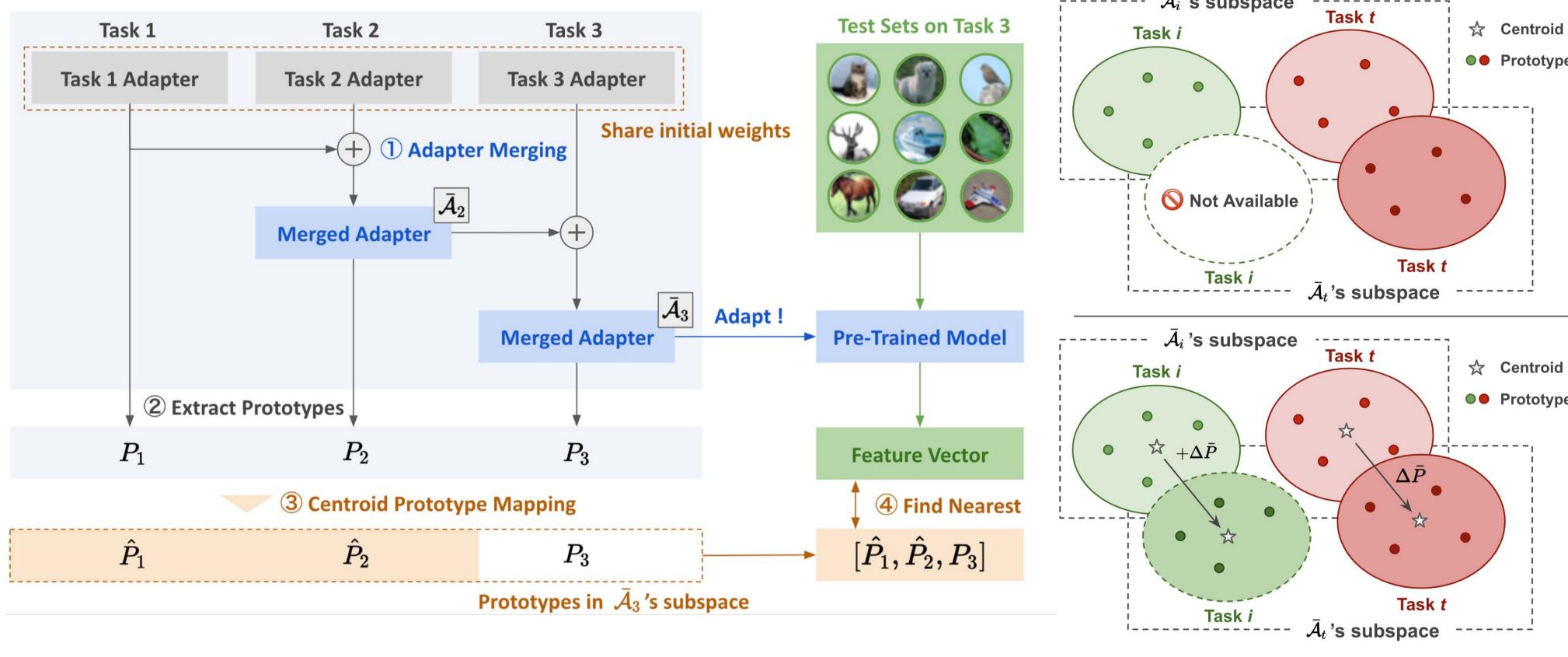
- Merge task-specific adapters to achieve scalability
- Adopt prototype alignment to resolve merging inconsistencies

Adapter Merging with Centroid Prototype Mapping for Scalable Class-Incremental Learning

Takuma Fukuda¹ Hiroshi Kera^{1,2} Kazuhiko Kawamoto¹

[1] Chiba Univ. [2] Zuse Institute Berlin

Method – ACMap



Adapter Merging

Weight Averaging [3]

- > Train adapters with shared initial weights
- \succ Average adapter weights iteratively $\bar{\boldsymbol{\theta}}_t = \left(1 \frac{1}{t}\right)\bar{\boldsymbol{\theta}}_{t-1} + \frac{1}{t}$

Initial Weight Replacement (IR)

- \succ Replaces initial weight $m{ heta}_{\mathrm{init}}$ with the weight $m{ heta}_1$ learned from task 1
- Encourages the formation of a low-loss basin

Early Stopping Strategy

- \triangleright Stops adapter merging at task L
- \circ As tasks increase, $oldsymbol{ heta}_{t-1}$ and $oldsymbol{ heta}_t$ becomes nearly identical

Centroid Prototype Mapping (CM)

Notations

 $ar{\mathcal{A}}_i$: merged adapter in task i, $m{P}_i(ar{\mathcal{A}})$: prototypes with $ar{\mathcal{A}}$ in task i

Prototype Distribution Shift

- ightharpoonup Previous prototypes $m{P}_i(\bar{\mathcal{A}}_t)$ cannot be calculated because their data are not available in task t
- They also cannot be directly reused, as prototype distribution shift occurs between $\boldsymbol{P}_i(\bar{\mathcal{A}}_i)$ and $\boldsymbol{P}_i(\bar{\mathcal{A}}_t)$

Centroid Prototype Mapping

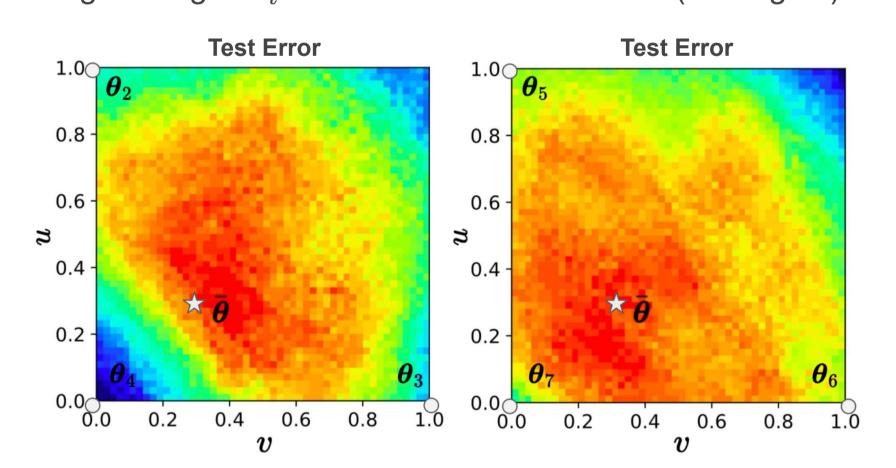
ightharpoonup Shift Previous prototype $m{P}_i(ar{\mathcal{A}}_i)$ with the centroid shift ΔP from $m{P}_t(ar{\mathcal{A}}_i)$ to $m{P}_t(ar{\mathcal{A}}_t)$

$$egin{align} \Delta P &= \mathbb{E}[oldsymbol{P}_t(ar{\mathcal{A}}_t) - oldsymbol{P}_t(ar{\mathcal{A}}_i)] \ oldsymbol{P}_i(ar{\mathcal{A}}_t) &pprox oldsymbol{P}_i(ar{\mathcal{A}}_i) + \Delta P \ \end{pmatrix}$$

Landscape Analysis for Adapters

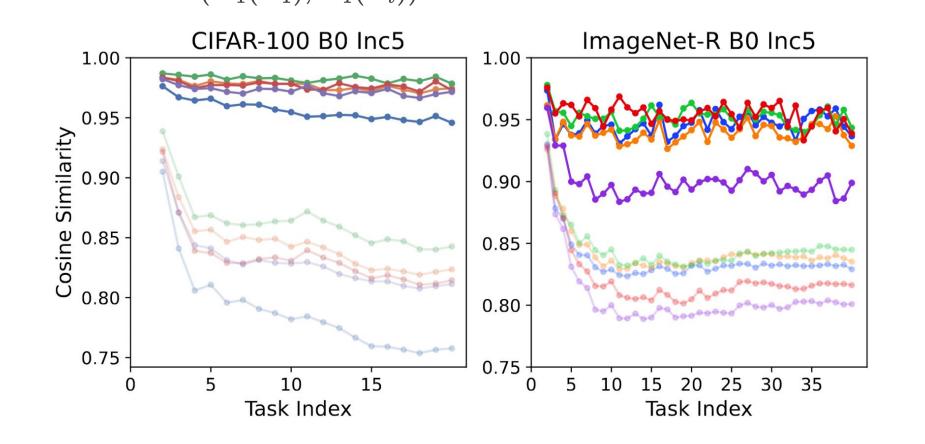
 \succ Loss landscape of three adapters through the linear interpolation $\theta = u\theta_{t-1} + v\theta_t + (1 - u - v)\theta_{t+1}, \ (0 \le u, v \le 1)$

Averaged weight $\bar{\boldsymbol{\theta}}_t$ is located in low-loss basin (red region)



Effectiveness of Prototype Mapping

- > Solid lines indicate effectiveness of prototype mapping $\operatorname{Sim}(\boldsymbol{P}_1(\bar{\mathcal{A}}_1),\boldsymbol{P}_1(\bar{\mathcal{A}}_t))$
- ightharpoonup Semi-transparent lines indicate prototype distribution shift $\mathrm{Sim}(\hat{\boldsymbol{P}}_1(\bar{\mathcal{A}}_1), \boldsymbol{P}_1(\bar{\mathcal{A}}_t))$



Results

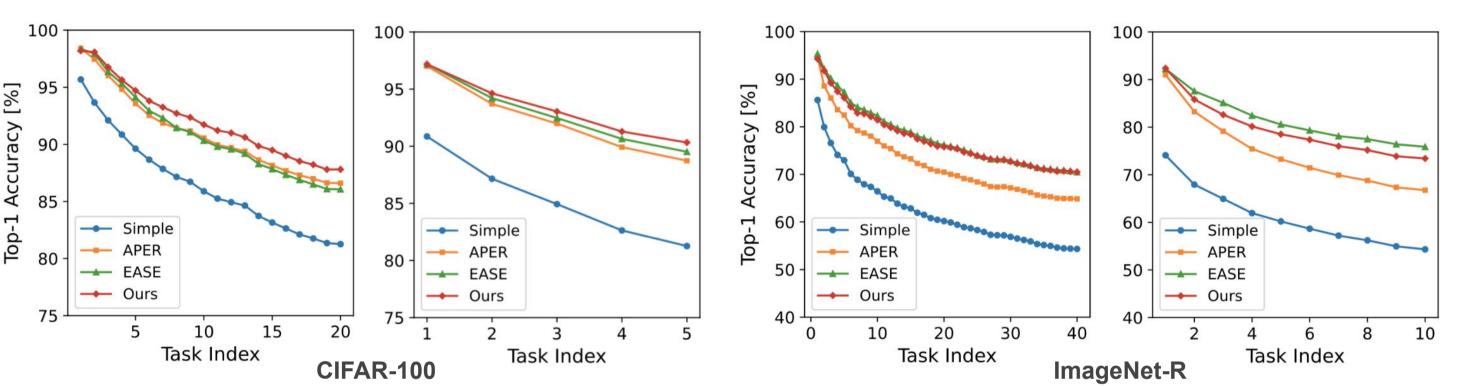
 $ar{A}$: Top-1 accuracy averaged across all tasks

B-n: Number of classes learned initially

 A_T : Top-1 accuracy on the final task

Inc-m: Number of new classes added in each task

Mothod	CIFAR B0 Inc5		${\rm CUB~B0~Inc}10$		IN-R B0 $Inc5$		IN-A B0 $Inc20$		VTAB~B0~Inc10	
Method	$ar{A}$	A_T	$ar{A}$	A_T	$ar{A}$	A_T	$ar{A}$	A_T	$ar{A}$	A_T
SimpleCIL [1]	87.57	81.26	92.20	86.73	62.58	54.55	59.77	48.91	85.99	84.38
APER [1]	90.65	85.15	92.21	86.73	72.35	64.33	60.47	49.37	85.95	84.35
EASE [2]	91.51	85.80	92.23	86.81	78.31	70.58	65.34	55.04	93.61	93.55
Ours w/o IR	91.54	87.35	91.74	86.96	76.56	70.08	64.00	54.67	90.28	86.25
Ours	92.04	87.81	91.56	86.66	77.31	70.49	65.19	56.19	91.21	87.56



Inference Time Comparison

Method	Time (s)	Time Ratio	Complexit
$\operatorname{SimpleCIL}$	22.6	$\times 0.96$	$\mathcal{O}(1)$
APER	44.1	$\times 1.88$	$\mathcal{O}(1)$
EASE	916.5	$\times 39.0$	$\mathcal{O}(T)$
ACMap (Ours)	23.5	-	$\mathcal{O}(1)$

On task 40 of ImageNet-R:

Compared to SimpleCIL and APER,

ACMap achieves comparable speed but higher accuracy

Compared to EASE,

ACMap achieves comparable accuracy but is 40x faster

Ablation Study

IR	CM	CIFAR $ar{A}$	B0 Inc5 A_T	IN-R E Ā	$30 \operatorname{Inc5} A_T$	 Threshold	CIFAR $ar{A}$	B0 Inc5 A_T	IN-R E $ar{A}$	$30 \mathrm{Inc}5$ A_T
✓ ✓	✓	90.46 91.53 91.07 92.01	86.32 87.35 86.85 87.73	75.99 76.47 76.56 77.10	69.55 69.88 69.80 70.25	L=0 $L=5$ $L=10$ $L=20$	91.07 91.88 92.00 92.04	86.85 87.61 87.76 87.80	76.56 76.81 77.09 77.27	69.80 69.87 70.25 70.37

Future Work

ACMap currently maintains a single merged adapter to ensure scalability. However, this design may limit performance, especially when tasks differ significantly in domain.

A potential extension is to maintain multiple merged adapters and dynamically select the most appropriate one for each task.

- [1] Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need. IJCV, 2024 [2] Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning. CVPR, 2024
- [3] Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. ICML, 2022