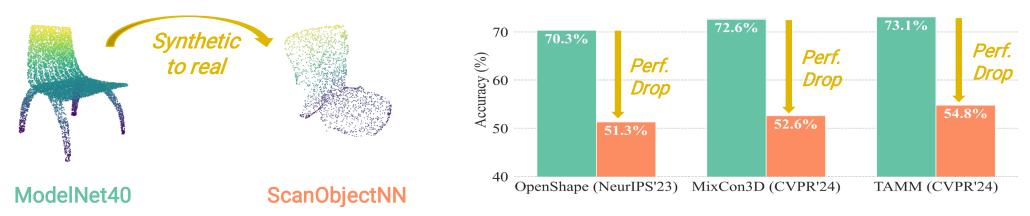


Occlusion-aware Text-Image-Point Cloud Pretraining for Open-World 3D Object Recognition

Bridging the Reality Gap in 3D Object Recognition

Khanh Nguyen

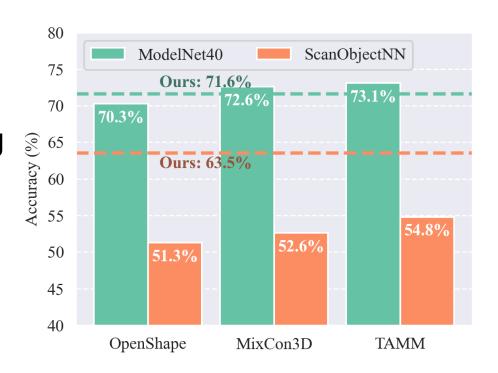
Ghulam Mubashar Hassan


Ajmal Mian

Real-world 3D recognition challenges

Open-world 3D recognition models: must generalize beyond *seen* categories and recognize *novel* objects

Synthetic vs. real: SOTA models struggle with real-world, partial 3D scans due to training on complete synthetic data

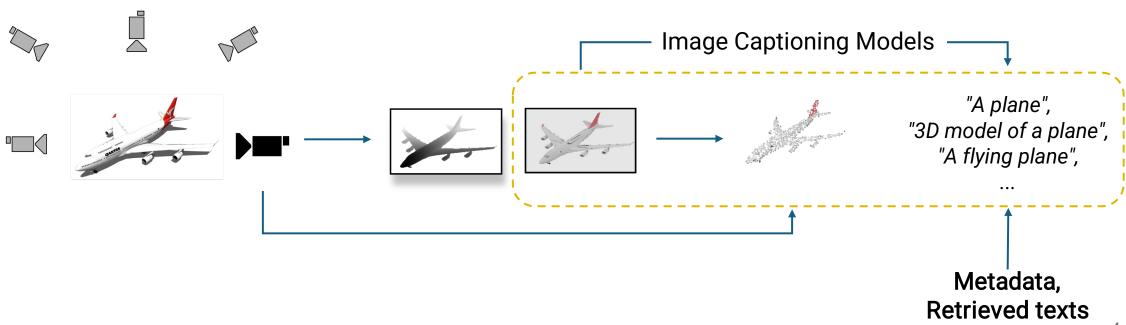

High computation cost: Transformer-based SOTA models have high inference costs due to quadratic complexity

Contributions

1. Synthetic vs. real:

→ OccTIP: an occlusion-aware pretraining framework that simulates incomplete
3D data from synthetic data

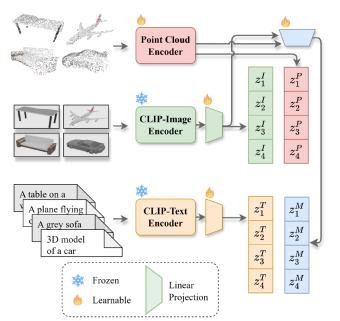
2. High computation cost:

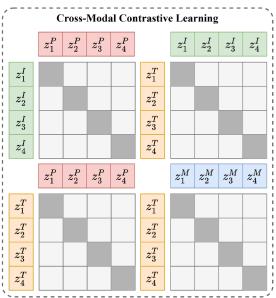

→ DuoMamba: an efficient model tailored for point clouds with linear-time complexity

Contribution 1: OccTIP

Occlusion-aware Text-Image-Point Cloud Pretraining Framework

✓ Generates realistic partial 3D scans by simulating occlusions through rendering

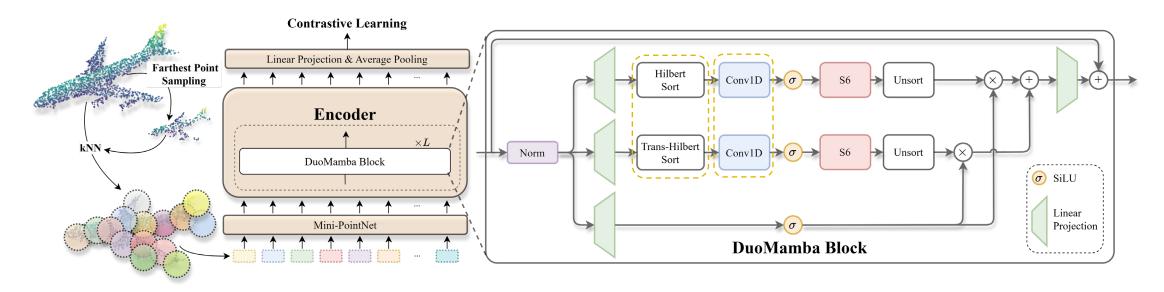




Contribution 1: OccTIP

Occlusion-aware Text-Image-Point Cloud Pretraining Framework

✓ Aligns point cloud representations with rich CLIP-based image and text embeddings through cross-modal contrastive learning


Training objective minimizes the total **InfoNCE** losses:

$$L = L^{P \longleftrightarrow T} + L^{P \longleftrightarrow I} + L^{I \longleftrightarrow T} + L^{M \longleftrightarrow T}$$

where *T*, *I*, *P*, *M* denote text, image, point cloud, and mixed (3D and 2D) modalities

Contribution 2: DuoMamba

To build our **linear-time** model, we adapt Mamba's selective SSMs (S6) into our **two-stream** blocks, incorporating key changes for point clouds:

- Two Hilbert curves: transform unordered point clouds into spatially meaningful sequences, preserving local geometry
- ✓ Standard Conv1D: captures richer local geometry via bidirectional information flow among nearby 3D point patches

Experiments: zero-shot classification

Datasets:

- ModelNet40-P: synthetic partial point clouds created from ModelNet40 using OccTIP
- ScanObjectNN: real-world partial point cloud dataset

Remarks:

- OccTIP framework consistenty improves the accuracy of SparseConv and PointBERT
- OccTIP + DuoMamba achieves the best performance

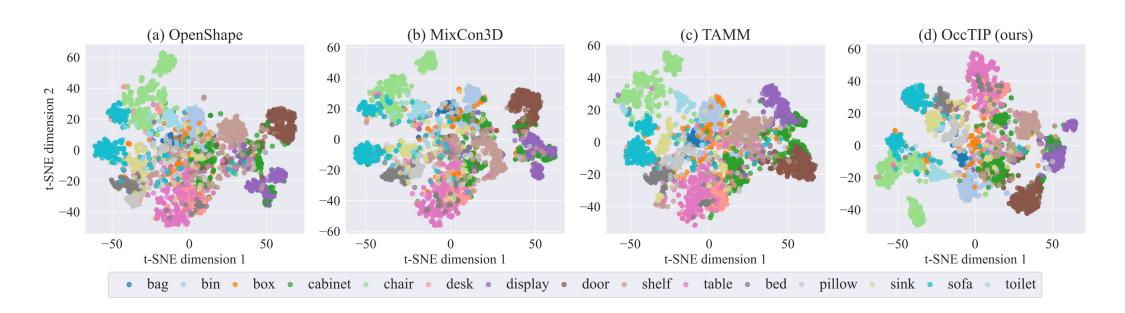
Method	Encoder	ModelNet40-P			ScanObjectNN		
		Top 1	Top 3	Top 5	Top 1	Top 3	Top 5
OpenShape [26]		42.1	61.6	69.4	52.7	72.7	83.6
TAMM [59]	SparseConv [4]	45.5	64.8	73.1	57.9	75.3	83.1
MixCon3D [12]		-	-	-	54.4	73.9	83.3
$MixCon3D^{\dagger}$ [12]		42.1	59.3	67.5	56.0	73.2	82.8
OccTIP		64.5	81.0	86.7	61.7	78.4	86.9
OpenShape [26]	PointBERT [55]	46.3	64.2	71.9	51.3	69.4	78.4
TAMM [59]		45.6	66.2	74.7	54.8	74.5	83.3
MixCon3D [12]		-	-	-	52.6	69.9	78.7
MixCon3D [†] [12]		50.3	69.7	78.6	55.5	72.8	81.1
OccTIP		67.7	82.7	87.3	60.6	78.2	86.0
OpenDlign [29]	ViT-H-14 [10]	-	-	-	59.5	76.8	83.7
OccTIP	DuoMamba	67.7	82.9	87.8	63.5	81.3	89.2

Experiments: 3D object detection

Experimental setting:

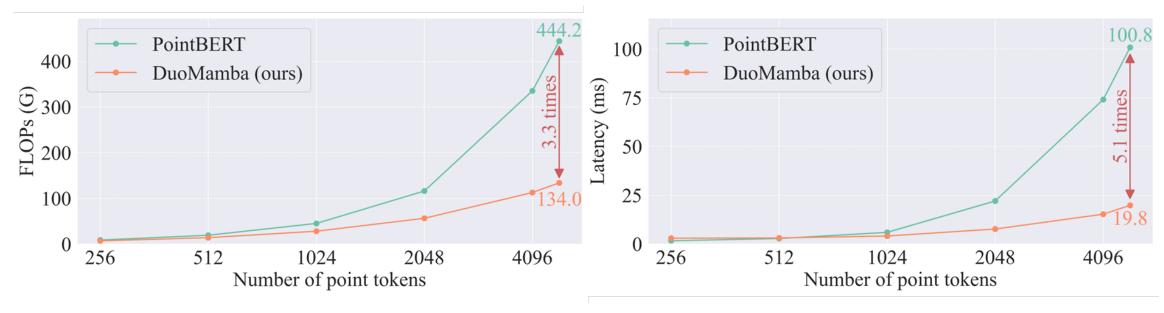
We leveraged off-the-shelf 3DETR-m for bounding box prediction and the pretrained zero-shot models for classification

Remarks:


OccTIP (ours) achieves the best results on both ScanNetV2 and SUN RGB-D datasets

	Method	ScanNetV2	SUN RGB-D
mAP ₂₅	PointCLIP [19]	6.0	-
	PointCLIP V2 [65]	19.0	-
	OpenShape* [26]	20.4	18.6
	MixCon3D [†] [12]	24.1	18.7
	TAMM* [59]	23.1	18.9
	OccTIP	28.9	24.4
mAP_{50}	PointCLIP [58]	4.8	-
	PointCLIP V2 [65]	11.5	-
	OpenShape* [26]	16.1	9.8
	MixCon3D [†] [12]	19.1	9.6
	TAMM* [59]	18.1	10.0
	OccTIP	22.7	13.0

Latent space visualization


- We extract the features of ScanObjectNN objects using pretrained models
- Our method OccTIP achieves clearer category separation and significantly reduces inter-class overlap

Computation and latency

DuoMamba dramatically reduces **computation** (up to 3.3 times lower FLOPS) and inference **latency** (up to 5.1 times faster) compared to Transformer-based PointBERT, especially at higher point token counts

Summary:

- OccTIP: bridging synthetic-to-real 3D gap
- DuoMamba: fast, state-of-the-art 3D architecture
- Impact: enabling robust real-world 3D AI

Project page: ndkhanh360.github.io/project-occtip

Contact information: duykhanh.nguyen@research.uwa.edu.au

