PatchDEMUX: A Certifiably Robust Framework for Multi-label Classifiers Against Adversarial Patches

Dennis Jacob, Chong Xiang, Prateek Mittal

Poster

PatchDEMUX: A Certifiably Robust Framework for Multi-label Classifiers Against Adversarial Patches

Dennis Jacob¹, Chong Xiang², Prateek Mittal² ¹UC Berkeley, ²Princeton University

1. Motivation

- Deep learning-based computer vision systems are vulnerable to adversarial vatch attacks
- · Many safety-critical CV systems depend on multi-label classifiers, such as traffic pattern recognition in autonomous vehicles
- · Certifiable defenses provide provable guarantees against patch attacks; have become popular for single-label classification

Figure 1: Using multi-label classification for traffic analysis ("L"-> left, "C" -> car, "P" -> person, etc.)

Our proposal: PatchDEMUX

- Certifiably robust framework that provably extends any defense for single-label classification to the multi-label setting
- 1) We address the challenge of patch attacks in the multi-label domain
- 2) Our framework provably guarantees lower bounds on performance
- · 3) We test with the SOTA single-label defense and attain strong robustness

2. Background

Patch threat model

• Define $\mathcal{R} \subseteq \{0,1\}^{w \times h}$ as restricted regions; elements inside region are 0 and outside are 1. Then, for image $x \in \mathcal{X}$, patch attacks are: $S_{x,\mathcal{R}} := \{r \circ x + (1-r) \circ x' | x' \in \mathcal{X}, r \in \mathcal{R}\}$

Certifiable defense against patch attacks

- · Certifiable defenses involve two key procedures
 - · 1) Inference runs at test time and responsible for defense predictions; denoted by INFER: $X \rightarrow Y$
 - 2) Certification used for evaluation, lower bounds performance of INFER on $x \in \mathcal{X}$ for any adversary; denoted by *CERT*: $\mathcal{X} \times \hat{\mathcal{Y}} \times \mathbb{P}(\mathcal{R}) \to \mathbb{R}$

3. Defense design

- · Key insight of PatchDEMUX -> treat multi-label classification task as a series of isolated binary classification problems (see Fig. 2)
 - 1) Inference apply underlying single-label inference SL-INFER to each class $i \in \{1, 2, ..., c\}$, final prediction pools results from isolated classifiers
- 2) Certification apply underlying single-label certification SL–CERT to each isolated classifier, lower bound true positives through accumulation
- Certification procedure helps bootstrap certified precision and recall $certified precision = \frac{TP_{lower}}{TP_{lower} + FP_{unner}}$

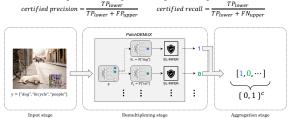


Figure 2: Diagram that illustrates the defense framework of PatchDEMUX, which has three core stages

Location-aware certification

- Improves bounds when attacker limited to a single patch (see Fig. 3)
- Set $\lambda \in \{0,1\}^{|\mathcal{R}|}$ as vulnerability status for classes failing SL-CERT
- Sum of 1λ corresponds to most vulnerable patch locations; some classes will be safe at optimal location -> residual robustness! (see paper for proof)



Figure 3: Extracting vulnerability status for all vatch locations helps determine the most vulnerable one.

4. Results

- · We initialize the backbone with PatchCleanser, the SOTA singlelabel defense
- · We test on MSCOCO 2014 and PASCAL VOC 2007 datasets
- 1) High clean performance
- 2) Non-trivial robustness
- Performance is strong under different attackers and parameters

Clean recall	25%	50%	75%	AP	Certified recall	25%	50%	75%	AP
Undefended clean	99.930	99.704	96.141	91.146	Certified robust	95.369	50.950	22.662	41.763
Defended clean	99.894	99.223	87.764	85.276	Location-aware	95.670	56.038	26.375	44.902
a) Clean setting				b) Certified robust setting					

Table 1: PatchDEMUX precision values at key recall levels on MSCOCO 2014, patch size ~2% of area

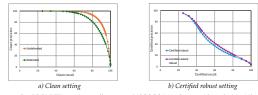


Figure 3: PatchDEMUX precision-recall curves on MSCOCO 2014 dataset with patch size ~2% of area

5. Conclusions

- We propose PatchDEMUX, a new defense for multi-label classifiers against patch attacks that extends any existing single-label defense
- · Future work will be able to interface with our framework
 - Code available at https://github.com/inspire-group/PatchDEMUX

Acknowledgements

This work was supported by NSF grants IIS-2229876 (the ACTION center) and CNS-2154873. Prateek Mittal acknowledges the support of NSF grant CNS-2131938, Princeton SEAS Innovation award, and OpenAI & FarAI superalignment grants.

Introduction

Motivation

- Deep learning-based computer vision systems are vulnerable to *adversarial* patch attacks
- Many safety-critical CV systems depend on multi-label classifiers, such as traffic pattern recognition in autonomous vehicles
- Certifiable defenses provide provable guarantees against patch attacks; have become popular for single-label classification

Motivation

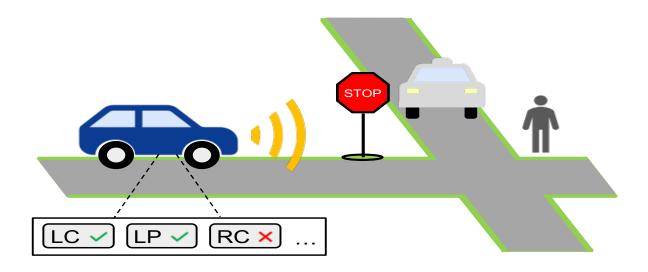


Figure 1: Using multi-label classification for traffic analysis ("L"-> left, "C" -> car, "P" -> person, etc.)

Our proposal: PatchDEMUX

- Certifiably robust framework that provably extends any defense for singlelabel classification to the multi-label setting
 - 1) We address the challenge of patch attacks in the multi-label domain
 - 2) Our framework provably guarantees lower bounds on performance
 - 3) We test with the SOTA single-label defense and attain strong robustness

Background

Background

Patch threat model

- Define $\mathcal{R} \subseteq \{0,1\}^{w \times h}$ as restricted regions; elements inside region are 0 and outside are 1. Then, for image $x \in \mathcal{X}$, patch attacks are:

$$S_{x,\mathcal{R}} := \{r \circ x + (1-r) \circ x' | x' \in \mathcal{X}, r \in \mathcal{R}\}$$

Certifiable defense against patch attacks

- Certifiable defenses involve two key procedures
 - 1) Inference runs at test time and responsible for defense predictions; denoted by *INFER*: $X \rightarrow Y$
 - 2) Certification used for evaluation, lower bounds performance of *INFER* on $x \in \mathcal{X}$ for any adversary; denoted by $CERT: \mathcal{X} \times \mathcal{Y} \times \mathbb{P}(\mathcal{R}) \to \mathbb{R}$

Defense design

Defense design

- Key insight of PatchDEMUX -> treat multi-label classification task as a series of isolated binary classification problems
 - 1) Inference apply underlying single-label inference SL–INFER to each class $i \in \{1, 2, ..., c\}$, final prediction pools results from isolated classifiers
 - 2) Certification apply underlying single-label certification *SL*–*CERT* to each isolated classifier, lower bound true positives through accumulation
- Certification procedure helps bootstrap certified precision and recall

$$certified\ precision = \frac{\mathit{TP}_{lower}}{\mathit{TP}_{lower} + \mathit{FP}_{upper}} \qquad certified\ recall = \frac{\mathit{TP}_{lower}}{\mathit{TP}_{lower} + \mathit{FN}_{upper}}$$

Defense design

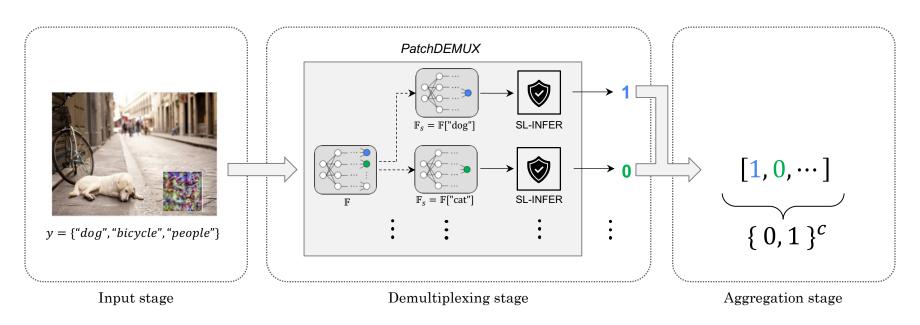


Figure 2: Diagram that illustrates the defense framework of PatchDEMUX, which has three core stages

Location-aware certification

- Improves bounds when attacker limited to a single patch
- Set $\lambda \in \{0,1\}^{|\mathcal{R}|}$ as vulnerability status for classes failing SL-CERT
 - Sum of 1λ corresponds to most vulnerable patch locations; some classes will be safe at optimal location -> residual robustness! (see paper for proof)

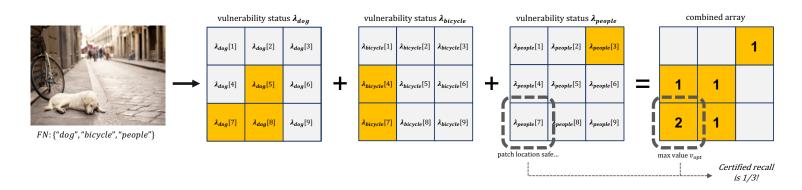


Figure 3: Extracting vulnerability status for all patch locations helps determine the most vulnerable one.

Results

Results

- We initialize the backbone with PatchCleanser, the SOTA single-label defense
- We test on MSCOCO 2014 and PASCAL VOC 2007 datasets
 - 1) High clean performance
 - 2) Non-trivial robustness
- Performance is strong under different attackers and parameters

Clean recall	25%	50%	75%	AP
Undefended clean	99.930	99.704	96.141	91.146
Defended clean	99.894	99.223	87.764	85.276

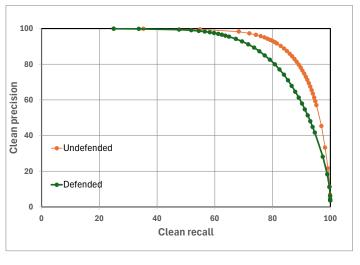
Certified recall	25%	50%	75%	AP
Certified robust	95.369	50.950	22.662	41.763
Location-aware	95.670	56.038	26.375	44.902

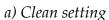
a) Clean setting

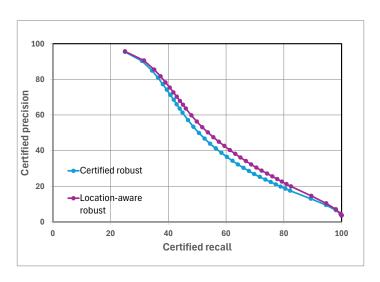
b) Certified robust setting

Table 1: PatchDEMUX precision values at key recall levels on MSCOCO 2014, patch size ~2% of area

Results







b) Certified robust setting

Figure 3: PatchDEMUX precision-recall curves on MSCOCO 2014 dataset with patch size ~2% of area

Conclusions

- We propose PatchDEMUX, a new defense for multi-label classifiers against patch attacks that extends any existing single-label defense
- Future work will be able to interface with our framework
 - Code available at https://github.com/inspire-group/PatchDEMUX

Acknowledgements

This work was supported by NSF grants IIS-2229876 (the ACTION center) and CNS-2154873. Prateek Mittal acknowledges the support of NSF grant CNS-2131938, Princeton SEAS Innovation award, and OpenAI & FarAI superalignment grants.

Thank you!

Dennis Jacob UC Berkeley djacob18@berkeley.edu