

Introduction

- (1) Refine ViT surrogate models from the forward propagation
- (2) Propose the FPR, consisting of AMD and MTE

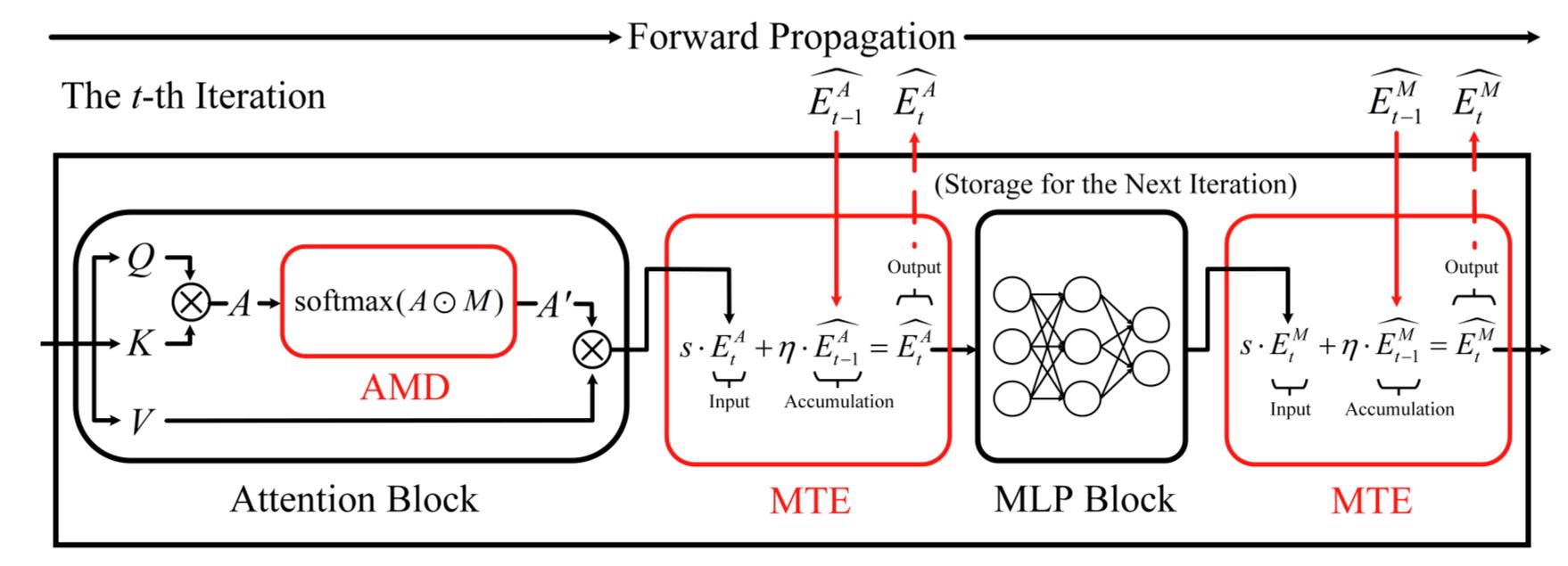
Visualization



crane (95.6%)

barrel (92.9%)

carbonara (98.9%)



maypole (100.0%)

Improving Adversarial Transferability on Vision Transformers via Forward Propagation Refinement

Yuchen Ren¹, Zhengyu Zhao¹*, Chenhao Lin¹, Bo Yang², Lu Zhou³, Zhe Liu⁴, Chao Shen¹ ¹Xi'an Jiaotong University, China; ²Information Engineering University, China; ³Nanjing University of Aeronautics and Astronautics, China; ⁴Zhejiang Lab, China

Forward Propagation Refinement (FPR)

Transformer Block

 E_t^A / E_t^M : Output Token Embedding of Attention / MLP Block at t-th Iteration $\widehat{E_t^A}$ / $\widehat{E_t^M}$: Accumulated Token Embedding of Attention / MLP Block at t-th Iteration A: Attention Map A': Diversified Attention Map M: Diversity Matrix Q/K/V: Query/Key/Value Component

Main Experiment

Model	Attack	ViT-B	CaiT-S	PiT-B	Vis-S	Swin-T	DeiT-T	CoaT-T	RN-18	VGG-16	DN-121	EN-b0	MN-v3	RNX-50	Average
	MIM [4]	97.2	61.8	40.4	42.3	54.9	65.8	44.4	51.7	57.2	51.3	50.8	51.7	38.2	50.9
ViT-B	PNAPO [38]	99.1	83.2	62.1	65.8	74.7	83.0	64.0	67.4	70.0	67.6	68.5	63.0	56.3	68.8
	TGR [45]	99.1	86.2	63.8	69.9	81.1	94.4	70.4	79.1	79.8	75.3	83.1	79.9	60.0	76.9
	GNS [51]	99.9	89.5	68.1	74.0	82.4	93.6	72.2	77.8	76.7	76.0	79.1	76.0	62.0	77.3
	FPR	99.2	92.5	73.0	78.3	88.5	98.2	<i>77.</i> 7	87.3	87.6	82.0	90.3	87.4	68.3	84.3
CaiT-S	MIM [4]	68.5	98.8	50.0	54.9	68.2	75.3	54.8	61.0	67.8	59.8	61.0	55.7	47.1	60.3
	PNAPO [38]	69.8	88.2	58.1	61.0	70.3	73.8	60.1	64.8	69.7	64.3	65.5	61.7	53.2	64.4
	TGR [45]	90.1	100.0	76.0	81.3	91.2	97.8	80.6	86.9	86.6	84.3	87.7	82.1	69.1	84.5
	GNS [51]	91.2	100.0	78.6	82.2	91.6	97.6	81.1	86.6	87.1	84.9	89.6	81.9	70.8	85.3
	FPR	93.8	100.0	81.6	85.6	95.0	98.8	86.8	87.4	88.7	88.6	90.6	82.9	76.8	88.1
	MIM [4]	30.0	36.1	38.5	43.3	51.0	75.0	55.5	69.5	68.7	60.8	64.5	71.6	40.4	54.2
	PNAPO [38]	39.5	50.9	49.6	54.9	61.6	85.4	65.0	78.7	76.7	72.2	77.9	81.0	50.8	64.9
PiT-T	TGR [45]	37.9	47.7	46.9	54.1	62.5	87.4	65.1	82.8	82.0	75.5	81.8	88.8	53.7	66.6
	GNS [51]	37.1	44.1	46.4	51.9	59.4	84.4	63.3	79.9	78.0	71.5	76.3	84.3	48.6	63.5
	FPR	44.3	56.1	57.1	62.4	69.5	91.3	72.2	88.7	86.4	80.4	87.6	91.1	60.3	72.9
DeiT-B	MIM [4]	86.0	82.4	67.0	69.5	79.7	87.7	65.3	69.0	70.5	70.1	71.4	61.4	58.2	72.2
	PNAPO [38]	83.4	87.7	72.4	74.1	82.2	86.0	71.9	74.9	74.7	74.9	76.1	68.0	66.3	76.4
	TGR [45]	92.4	97.1	81.2	84.3	92.6	97.9	83.5	86.0	85.2	85.0	89.9	84.5	74.6	87.2
	GNS [51]	92.1	98.0	80.5	84.2	91.0	98.0	79.8	83.3	80.7	83.5	86.7	81.3	70.8	85.4
	FPR	94.6	98.4	83.8	86.7	95.5	99.5	87.0	89.8	89.2	88.1	93.9	86.8	79.8	90.2

CVPR25

Paper ID: 10733

AMD and MTE

Attention Map Diversification (AMD)

$$A' = AMD(A) = \operatorname{softmax}(A \odot M)$$

Momentum Token Embedding (MTE)

$$\widehat{E_t} = MTE(E_t) = \eta \cdot \widehat{E_{t-1}} + s \cdot E_t$$

- (1) AMD and MTE improve the transferability from different angles
- (2) Their complementary effects jointly enhance the adversarial transferability

Compatibility Experiment

Method	ViTs	CNNs
SIA [36]	73.4	69.1
SIA+FPR	86.6	90.4
BSR [32]	69.4	66.9
BSR+FPR	84.8	89.9
VTM [34]	63.1	57.3
VTM+FPR	84.0	81.7
GRA [49]	73.6	68.3
GRA+FPR	86.1	85.3