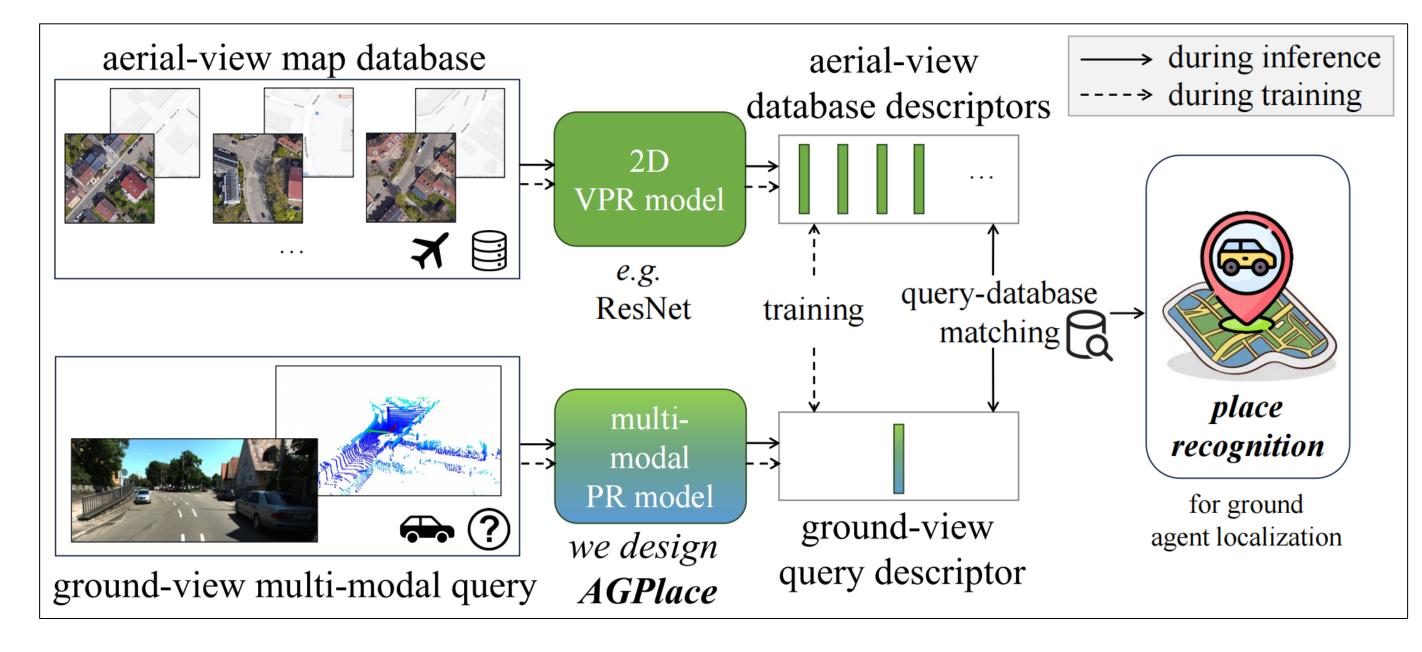
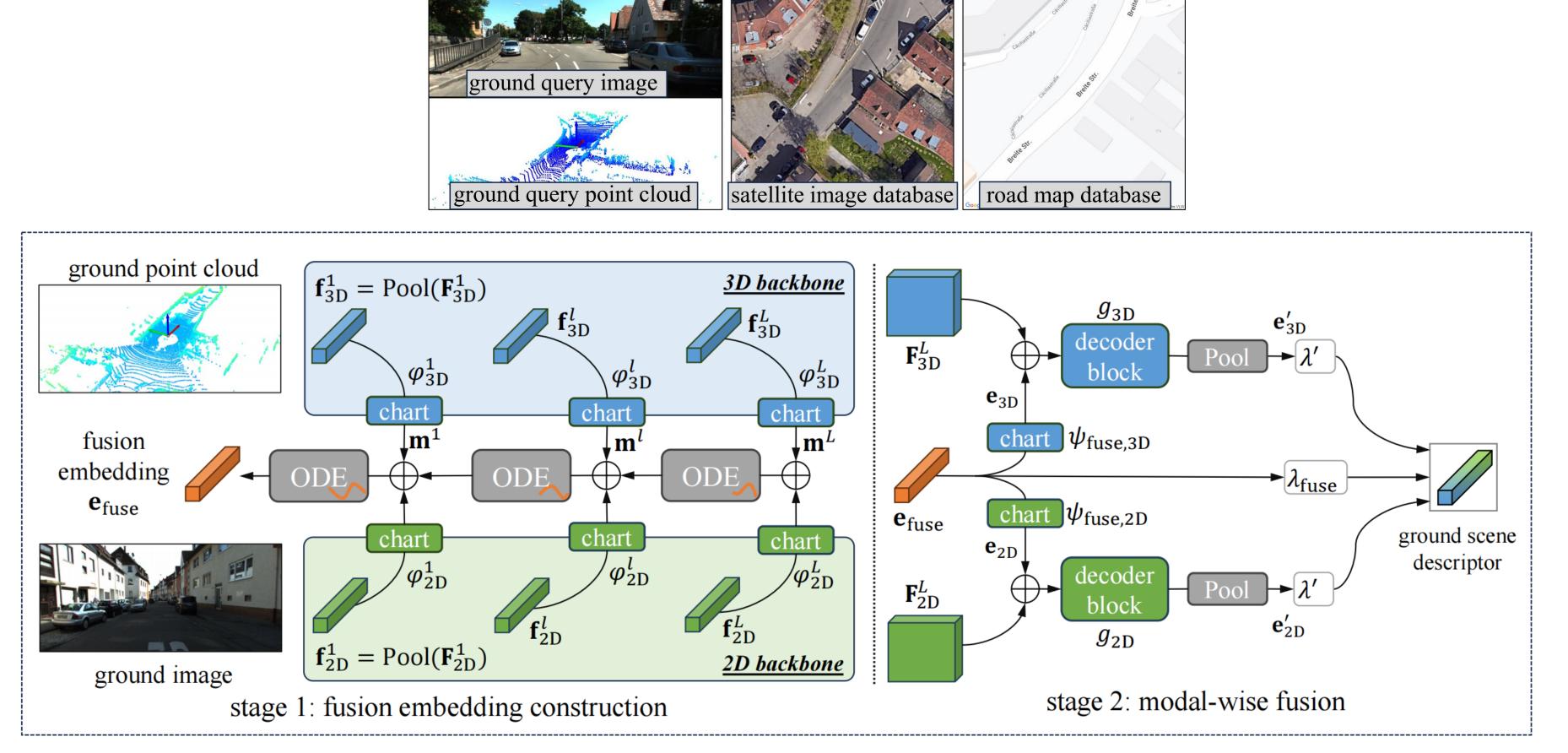


Multi-Modal Aerial-Ground Cross-View Place Recognition with Neural ODEs

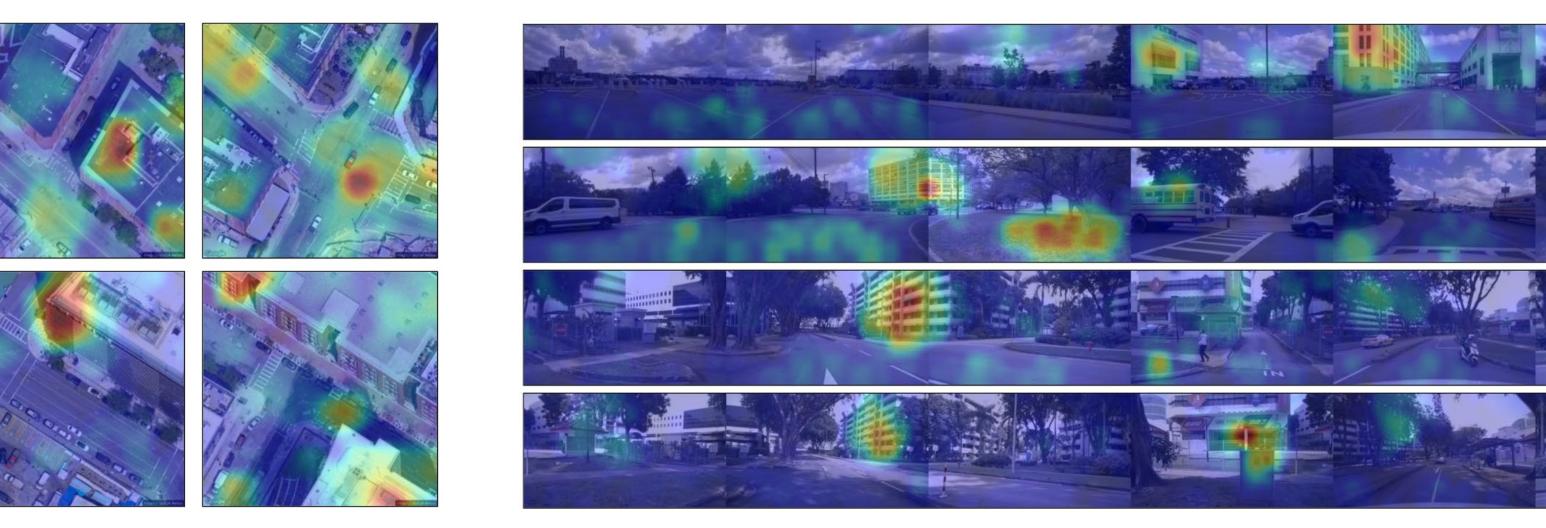
Sijie Wang*¹ Rui She*² Qiyu Kang³ Siqi Li¹ Disheng Li¹ Tianyu Geng¹ Shangshu Yu¹ Wee Peng Tay¹



¹Nanyang Technological University


²Beihang University

³University of Science and Technology of China


Place recognition (PR) aims at retrieving the query place from a database and plays a crucial role in various applications, including navigation, autonomous driving, and augmented reality. While previous multi-modal PR works have mainly focused on the same-view scenario in which ground-view descriptors are matched with a database of ground-view descriptors during inference, the multi-modal cross-view scenario, in which ground-view descriptors are matched with aerial-view descriptors in a database, remains under-explored. We propose AGPlace, a model that effectively integrates information from multi-modal ground sensors (cameras and LiDARs) to achieve accurate aerialground PR. AGPlace achieves effective aerial-ground cross-view PR by leveraging a manifold-based neural ordinary differential equation (ODE) framework with a multidomain alignment loss. It outperforms existing state-of-the-art cross-view PR models on large-scale datasets. As most existing PR models are designed for ground-ground PR, we adapt these baselines into our cross-view pipeline. Experiments demonstrate that this direct adaptation performs worse than our overall model architecture AGPlace. AGPlace represents a significant advancement in multi-modal aerial-ground PR, with promising implications for real-world applications.

An example pipeline of multi-modal aerial-ground PR. (1) The aerial-view geotagged maps (e.g. aerial RGB images, road maps) act as the database. (2) The ground-view multi-modal data (images + point clouds) are the place query to be matched with the database.

The pipeline overview. In the first stage, the ground image and point cloud are processed with separate backbone branches, the output features of which are used to build the fusion embedding. In the second stage, the constructed fusion embedding is mapped into the respective modal spaces to achieve further modal-wise feature extraction.

aerial view ground view

Model	Туре	Satellite R@1/5/10	Road Map R@1/5/10	
ConvAP (ResNet-18) [2]	2D	25.2 / 40.8 / 48.6	20.3 / 32.0 / 39.7	
CosPlace (ResNet-18) [5]	2D	22.8 / 38.9 / 47.4	17.4 / 31.1 / 38.8	
MixVPR (ResNet-18) [1]	2D	19.4 / 30.5 / 37.3	19.3 / 32.0 / 39.1	
AnyLoc* (DINOV2-s) [25]	2D	4.2 / 8.7 / 13.0	5.4 / 5.5 / 5.9	
SALAD (DINOV2-s) [22]	2D	26.1 / 34.3 / 39.3	17.0 / 27.4 / 33.5	
TransGeo (DINOV2-s) [76]	2D+C	22.9 / 32.9 / 39.2	22.4 / 31.9 / 36.9	
Sample4Geo (ConvNeXt-t) [11]	2D+C	27.0 / 41.7 / 49.0	22.7 / 41.0 / 47.6	
ArcGeo (ConvNeXt-t) [59]	2D+C	28.2 / 41.3 / 48.5	24.4 / 39.6 / 46.5	
MinkLoc3DV2 [27]	3D	26.5 / 39.1 / 46.0	23.3 / 36.0 / 43.8	
BEVPlace [39]	3D	22.3 / 33.9 / 40.8	23.6 / 35.5 / 41.4	
VXP [34]	3D+C	20.7 / 34.5 / 41.0	22.4 / 34.9 / 42.0	
Lip-Loc [58]	3D+C	<u>29.9</u> / 42.2 / 49.0	24.5 / 35.6 / 42.4	
MinkLoc++ [28]	MM	28.9 / 39.3 / 44.9	26.5 / 40.8 / 48.8	
AdaFusion [29]	MM	26.5 / 39.6 / 47.8	27.2 / 41.6 / 49.3	
MSSPlace [41]	MM	25.5 / 37.4 / 45.0	26.7 / 41.2 / 49.0	
LCPR [74]	MM	27.7 / 44.4 / 50.6	24.5 / 39.0 / 47.7	
UMF [15]	MM	27.1 / 42.6 / 49.2	<u>25.6</u> / 40.4 / <u>49.7</u>	
AGPlace (ours)	MM+C	32.0 / 47.6 / 54.9	28.2 / 43.3 / 52.0	

Aerial-ground PR results on the KITTI-360-AG dataset using satellite or road map aerial sources. "*" denotes the model is frozen and purely relies on pre-trained weights. "C" denotes the model is designed for cross-view/cross-modal PR. Hard negative mining is applied to all models.

Extra			Oxford	
train data	AR@1%	AR@1	AR@1%	AR@1
	96.1	-	_	-
	98.2	-	-	-
	_	-	-	98.0
	99.1	96.7	-	-
	_	-	99.2	98.2
	_	-	99.6	96.9
√	99.1	97.9	_	-
	99.1	97.6	-	-
	-	-	99.7	99.0
✓	99.3	98.3	_	-
	<u>99.5</u>	98.2	-	-
	99.7	98.3	99.9	99.3
		train data AR@1% 96.1 98.2 - 99.1 - 99.1 99.1 99.1 99.1 99.5	train data AR@1% AR@1 96.1 - 98.2 99.1 96.7 99.1 97.9 99.1 97.6 ✓ 99.3 98.3 99.5 98.2	train data AR@1% AR@1 AR@1%

Aerial-ground PR results on the nuScenes-AG dataset using satellite image database. "fail" denotes dropping the modality input during testing. All models are trained with both modalities.