# SnapGen: Taming High-Resolution Text-to-Image Models for Mobile Devices with Efficient Architectures and Training

## CVPR 2025 Highlight

Dongting Hu\*, Jierun Chen\*, Xijie Huang\*, Huseyin Coskun, Arpit Sahni, Aarush Gupta, Anujraaj Goyal, Dishani Lahiri, Rajesh Singh, Yerlan Idelbayev, Junli Cao, Yanyu Li, Kwang-Ting Cheng, S.-H. Gary Chan, Mingming Gong, Sergey Tulyakov, Anil Kag, Yanwu Xu, Jian Ren

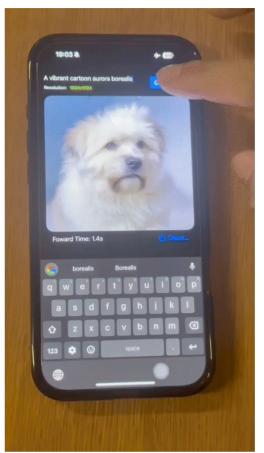
Snap Inc.



#### SnapGen is the first image generation model (379M) that:

- synthesizes high-resolution (1024x1024) images
- runs on **mobile** devices in 1.4s
- achieves high quality (0.66 on GenEval).

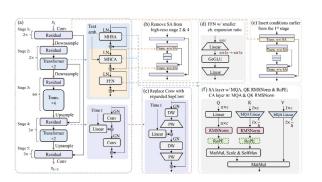




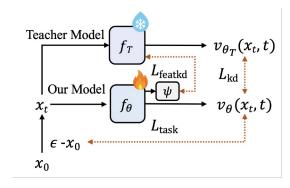


#### In this work we propose:

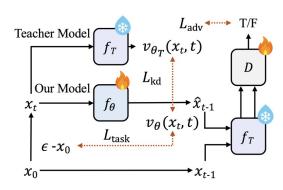
Efficient Network Architectures



Efficient Training Techniques

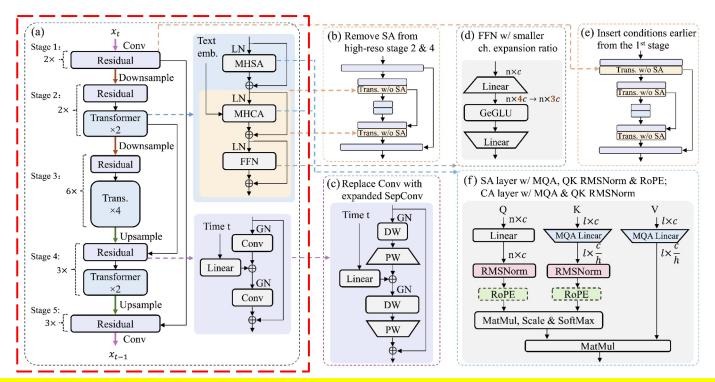


Advanced Step Distillation



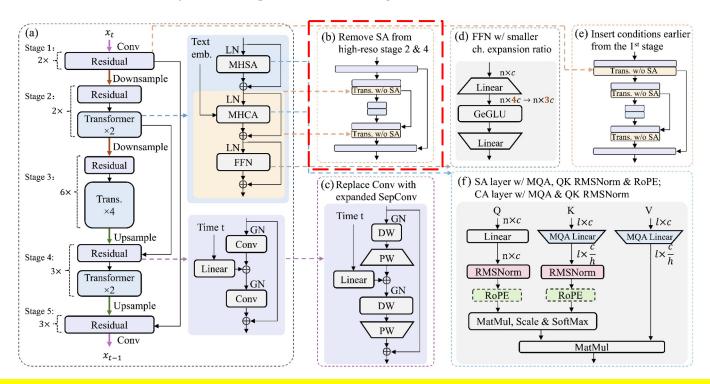


(a) Based on SDXL's **UNet**, we design an **efficient** architecture that maintains **high-quality** generation.



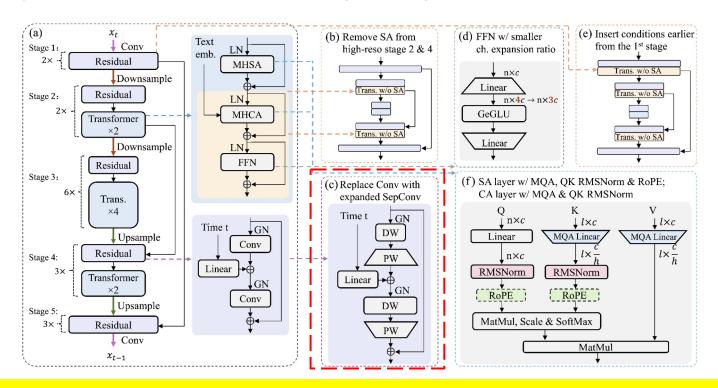


(b) We remove **self attention** layer from **high-resolution** stages.



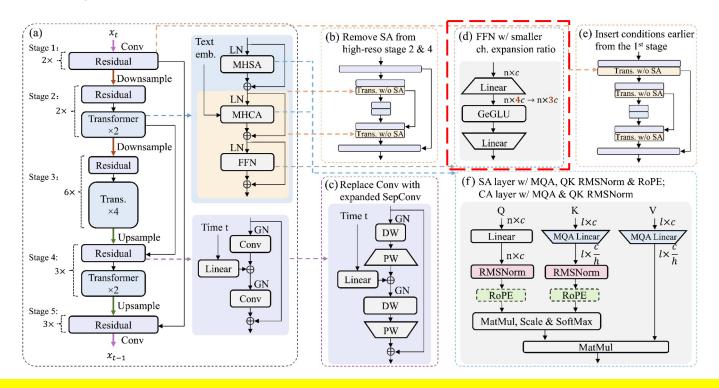


(c) We replace the conv in the **residual blocks** with **expanded separable convolutions**.



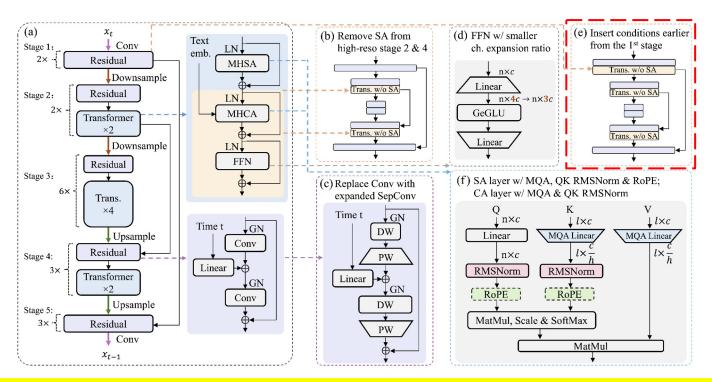


(d) We trim the **expansion ratio** in the transformer **feedforward** blocks.



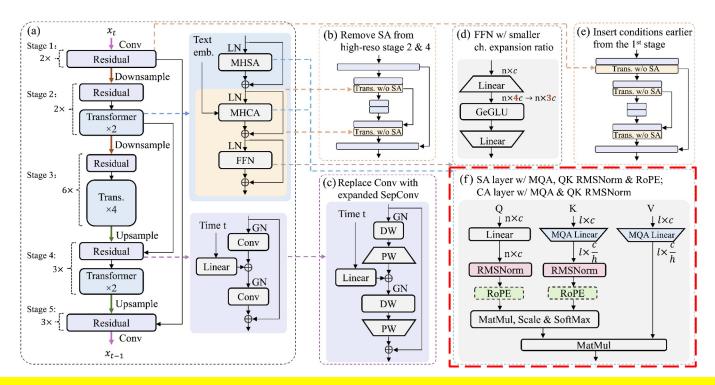


(e) We incorporate **cross attention** in the **first** stage.





(f) We replace MHSA with **MQA** and employ **QK RMSNorm** and **RoPE** Embeddings.

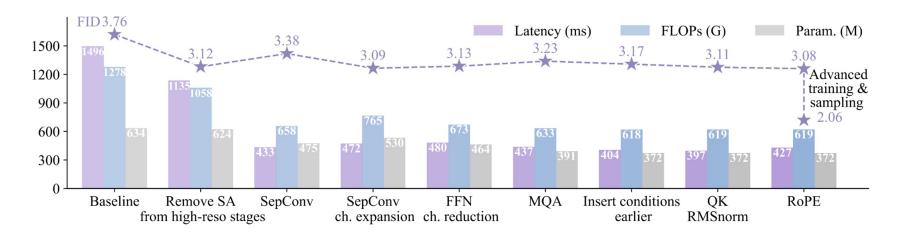




We obtain an efficient denoising backbone with these optimizations.

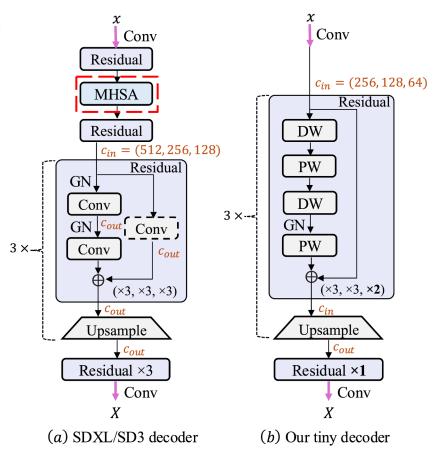
Table 1. Class-conditional image generation on ImageNet  $256 \times 256$  with CFG. FLOPs are calculated for one forward pass.

| Model       | Param (M) | FLOPs (G) | FID↓ |
|-------------|-----------|-----------|------|
| LDM-4 [61]  | 400       | 104       | 3.60 |
| UViT-L [8]  | 287       | 77        | 3.40 |
| UViT-H[8]   | 501       | 133       | 2.29 |
| DiT-XL [55] | 675       | 119       | 2.27 |
| SiT-XL [52] | 675       | 119       | 2.06 |
| Ours        | 372       | 38        | 2.06 |



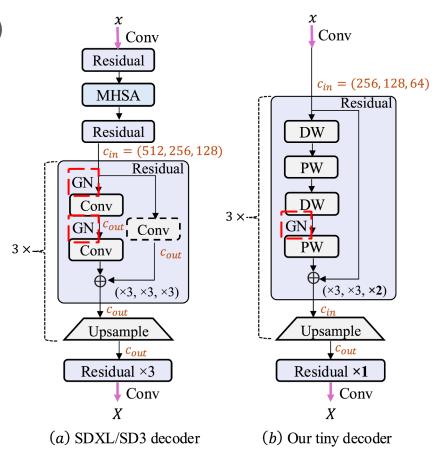


Remove attention layers.



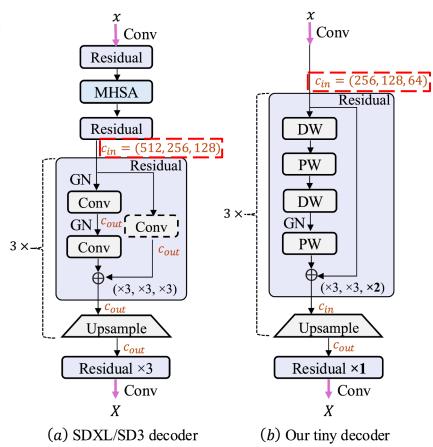


- Remove attention layers.
- Keep a minimal amount of Group Norm layer.



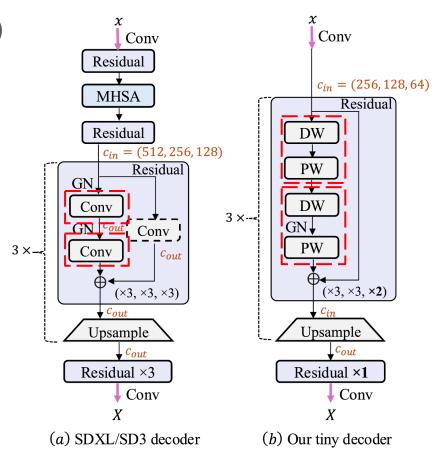


- Remove attention layers.
- Keep a minimal amount of Group Norm layer.
- Make the decoder thinner.



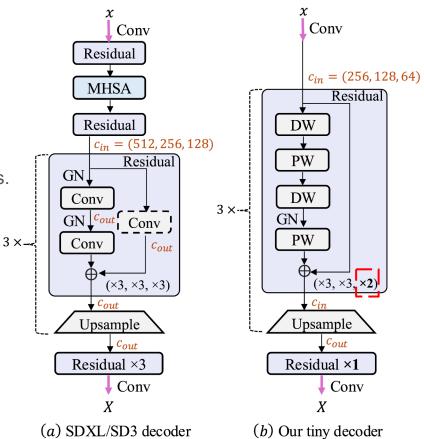


- Remove attention layers.
- Keep a minimal amount of Group Norm layer.
- Make the decoder thinner.
- Replace Conv with SepConvs.



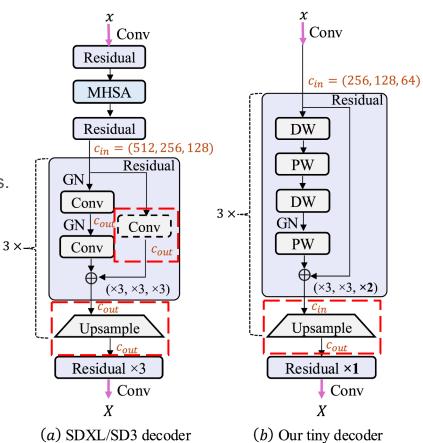


- Remove attention layers.
- Keep a minimal amount of Group Norm layer.
- Make the decoder thinner.
- Replace Conv with SepConvs.
- Use fewer residual blocks in high-resolution stages.





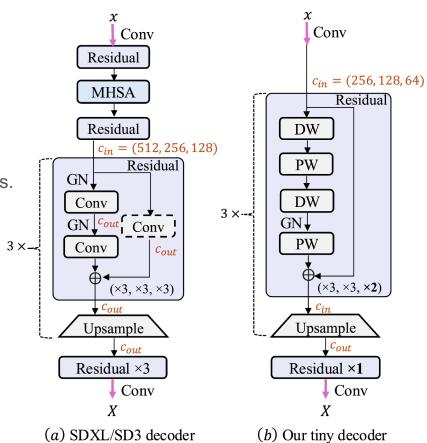
- Remove attention layers.
- Keep a minimal amount of Group Norm layer.
- Make the decoder thinner.
- Replace Conv with SepConvs.
- Use fewer **residual** blocks in **high-resolution** stages.
- Remove the Conv shortcut in residual blocks.





- Remove attention layers.
- Keep a minimal amount of Group Norm layer.
- Make the decoder thinner.
- Replace Conv with SepConvs.
- Use fewer residual blocks in high-resolution stages.
- Remove the Conv shortcut in residual blocks.

| Decoder   | Ch | PSNR  | Param (M) | FLOPs (G) | Latency (ms)<br>on ANE | Latency (ms)<br>on GPU |
|-----------|----|-------|-----------|-----------|------------------------|------------------------|
| SDXL [56] | 4  | 24.89 | 49.49     | 4970      | OOM                    | 9469                   |
| SD3 [19]  | 16 | 27.92 | 49.55     | 4970      | OOM                    | OOM                    |
| Ours      | 16 | 27.85 | 1.38      | 224       | 174                    | -                      |





# Latency for 1024x1024 generation on iPhone 16 Pro-Max

| Component         | Param (M) | Latency on ANE |
|-------------------|-----------|----------------|
| Tiny Decoder      | 1.38      | 119 ms         |
| Denoiser UNet     | 378       | 274 ms         |
| CLIP-L            | 123       | 4 ms           |
| CLIP-G            | 302       | 23 ms          |
| 4-step Generation | -         | 1.4 s          |
| 8-step Generation | -         | 2.5 s          |







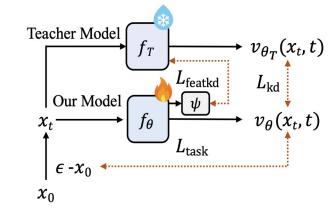
## **Multi-Level Knowledge Distillation**

1. Teacher Model: SD3.5-Large (heterogeneous architecture)



## **Multi-Level Knowledge Distillation**

- 1. Teacher Model: SD3.5-Large (heterogeneous architecture)
- 2. Multi-Level:
  - a. Output Distillation:  $\mathcal{L}_{\mathrm{kd}} = \mathbb{E} \Big[ ||v_{\theta_T}(x_t,t) v_{\theta}(x_t,t)||_2^2 \Big]$
  - b. Feature Distillation:  $\mathcal{L}_{ ext{featkd}} = \mathbb{E}\Big[\sum_{(l_T,l)}||f_{ heta_T}^{l_T}(x_t,t) \psi(f_{ heta}^l(x_t,t))||_2^2\Big]$



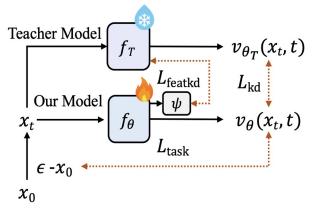


## **Multi-Level Knowledge Distillation**

- I. Teacher Model: SD3.5-Large (heterogeneous architecture)
- Multi-Level:

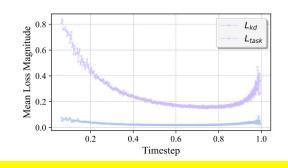
a. Output Distillation: 
$$\mathcal{L}_{\mathrm{kd}} = \mathbb{E} \Big[ ||v_{ heta_T}(x_t,t) - v_{ heta}(x_t,t)||_2^2 \Big]$$

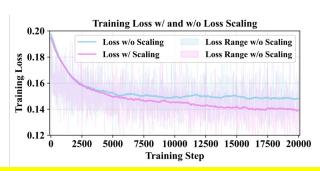
b. Feature Distillation:  $\mathcal{L}_{ ext{featkd}} = \mathbb{E}\Big[\sum_{(l_T,l)}||f_{\theta_T}^{l_T}(x_t,t) - \psi(f_{\theta}^l(x_t,t))||_2^2\Big]$ 



3. Timestep-Aware Scaling: scale the loss **coefficient** w.r.t **prediction difficulty** in various **timesteps**:

$$\mathcal{S}(\mathcal{L}_{\mathrm{task}}, \mathcal{L}_{\mathrm{kd}}) = \mathbb{E}_t \Big[ \lambda(t) \cdot \mathcal{L}_{\mathrm{task}}^t \! + \! \big( 1 \! - \! \lambda(t) \big) \frac{|\mathcal{L}_{\mathrm{task}}^t|}{|\mathcal{L}_{\mathrm{kd}}^t|} \cdot \mathcal{L}_{\mathrm{kd}}^t \Big]$$







#### **Qualitative Results**

Ours PixArt- $\alpha$  Lumina-Next SD3-Medium SDXL Playgroundv2 SD3.5-Large A car made out of vegetables.



... an adorable ghost, ... , holding a heart shaped pumpkin, ... spooky haunted house background



under the sea, with splashes of different colors and the ripples of light on the sandy bottom



a rocky ocean with sunset with surfboards and palm trees and mountains

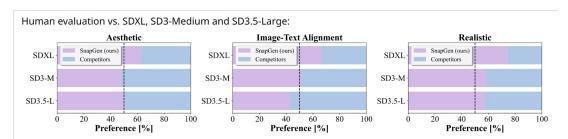


Happy dreamy owl monster sitting on a tree branch, colorful glittering particles, detailed feathers





#### **Quantitative Results**



Comparison with existing T2I models across various benchmarks:

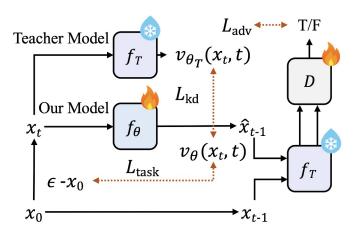
| Model            | Param | Throughput | GenEval ↑   | DPG ↑       | CLIP↑ | Image<br>Reward ↑ |
|------------------|-------|------------|-------------|-------------|-------|-------------------|
| PixArt- $\alpha$ | 0.6B  | 0.42       | 0.48        | 71.1        | 0.316 | 1.15              |
| PixArt- $\Sigma$ | 0.6B  | 0.46       | 0.53        | 80.5        | 0.317 | 1.13              |
| SD-1.5           | 0.9B  |            | 0.43        | 63.2        | 0.287 | 0.19              |
| SD-2.1           | 0.9B  | -          | 0.50        | 64.2        | 0.281 | 0.29              |
| Sana             | 1.6B  | 1.00       | 0.66        | 84.8        | 0.327 | 1.25              |
| LUMINA-Next      | 2.0B  | 0.06       | 0.46        | 74.6        | 0.309 | 0.88              |
| SDXL             | 2.6B  | 0.18       | 0.55        | 74.7        | 0.301 | 0.99              |
| Playgroundv2     | 2.6B  | 0.18       | 0.59        | 74.5        | 0.317 | 1.25              |
| Playgroundv2.5   | 2.6B  | 0.18       | 0.56        | 75.5        | 0.319 | 1.34              |
| IF-XL            | 5.5B  | 0.06       | <u>0.61</u> | 75.6        | 0.311 | 0.65              |
| Ours w/o KD      | 0.38B | 1.04       | 0.61        | 76.3        | 0.321 | 1.20              |
| SnapGen (ours)   | 0.38B | 1.04       | 0.66        | <u>81.1</u> | 0.332 | <u>1.32</u>       |



## **Advanced Step Distillation**

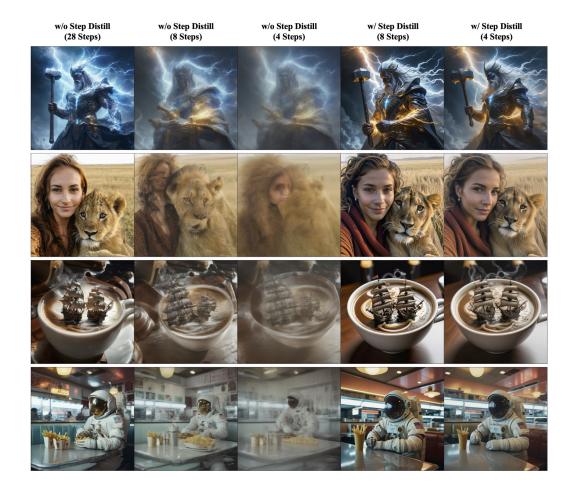
- 1. Teacher Model: SD3.5-Large-Turbo (heterogeneous architecture)
- 2. Method: diffusion-GAN
- 3. Advanced Objective: a few-step diffusion model with adversarial refinement and knowledge distillation

$$\min_{D_{\theta_T}} \max_{G_{\theta}} \mathbb{E} \Big[ [\log(D_{\theta_T}(x_{t-1}, t))] + [\log(1 - D_{\theta_T}(x_{t-1}', t))] - \mathcal{S}(\mathcal{L}_{\text{task}}, \mathcal{L}_{\text{kd}}) \Big]$$





## **Qualitative Results**



**Thanks for watching!** 

