

Directional Label Diffusion Model for Learning from Noisy Labels

Senyu Hou¹, Gaoxia Jiang¹, Jia Zhang¹, Shangrong Yang¹, Husheng Guo¹, Yaqing Guo¹, Wenjian Wang²*

¹School of Computer and Information Technology, Shanxi University, China ²Key Laboratory of Data Intelligence and Cognitive Computing, Shanxi University, China

1. Introduction: Background

□ The Generality and Impact of Label Noise

Generality: Label noise are numerous and widespread.

MNIST CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw Benchmarks: given: lobster given: cat given: ewer given: white stork corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork corrected: eye cat wolf cheetah jagure lyxn coyote Animal-10N: lyxn wolf jagure cheetah cat cat koala gold fish peacock cock tailed frog magpie WebVision: dog cookie struthio camelus tree frog retriever pizza shirt shirt T-shirt downcoat dress jacket Clothing1M:

downcoat

shawl

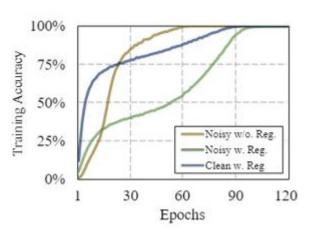
shirt

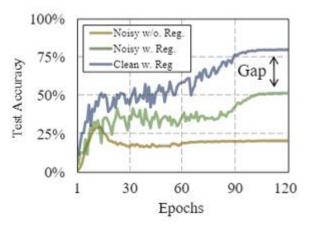
suit

windbreaker

sweater

• Impact: Misguides the model training





1. Introduction: Motivation

□ Troditional methods to deal with label noise

- ✓ Methods: Robust Loss Functions, Regularization, Sample Weighting, Robust Architecture, or Ensemble Methods
- ✓ Limitation: Discriminative paradigm

□ Generative perspective

- ✓ Methods: Take the labels as the diffusion objects and the image features as the conditionl information
- ✓ Limitation: Non-explicit Robustness

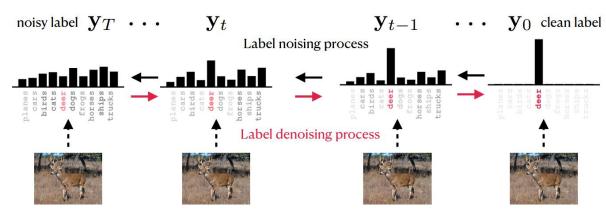
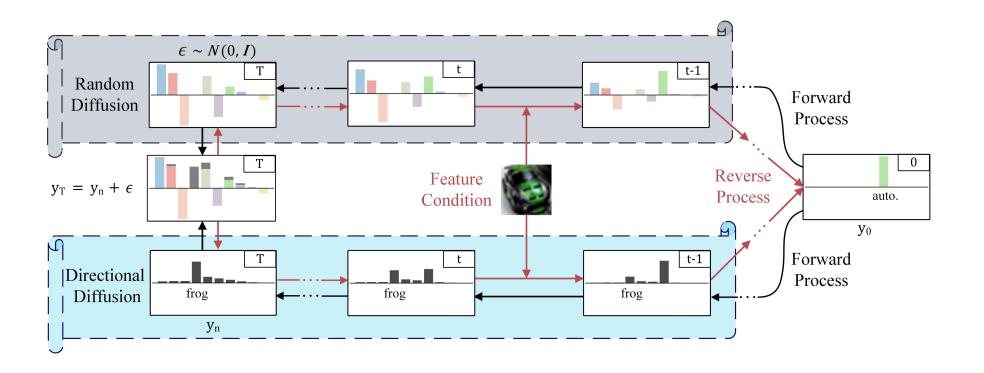


Figure 1: Label denoising as a reverse noising process.

We proposes a novel directional label diffusion (DLD) paradigm to **expand the diffusion model into a robust classifier** that explicitly accommodates more noise knowledge.



Forward Process

A new forward process containing label noise information

The new forward distribution

$$y_{t} = y_{t-1} + \bar{\alpha}_{t}y_{d} + \bar{\beta}_{t}\epsilon_{t-1},$$

$$= y_{t-2} + (\alpha_{t-1} + \alpha_{t})y_{d} + (\sqrt{\beta_{t-1}^{2} + \beta_{t}^{2}})\epsilon_{t-2}$$

$$= \dots$$

$$= y_{0} + \bar{\alpha}_{t}y_{d} + \bar{\beta}_{t}\epsilon,$$

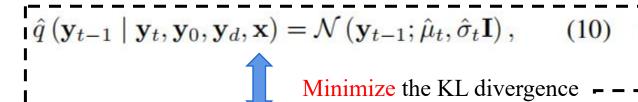
$$\hat{q}(\mathbf{y}_{t}|\mathbf{y}_{t-1},\mathbf{y}_{d},\mathbf{x}) := q(\mathbf{y}_{t}|\mathbf{y}_{t-1},\mathbf{y}_{d})$$

$$= \mathcal{N}(\mathbf{y}_{t};\mathbf{y}_{t-1} + \alpha_{t}\mathbf{y}_{d},\beta_{t}^{2}\mathbf{I}),$$

$$\hat{q}(\mathbf{y}_{1:T} \mid \mathbf{y}_{0},\mathbf{y}_{d},\mathbf{x}) := \prod_{t=1}^{T} \hat{q}(\mathbf{y}_{t} \mid \mathbf{y}_{t-1},\mathbf{y}_{d},\mathbf{x})$$

$$= \mathcal{N}(\mathbf{y}_{t};\mathbf{y}_{0} + \bar{\alpha}_{t}\mathbf{y}_{d},\bar{\beta}_{t}^{2}\mathbf{I}),$$

Reverse Process

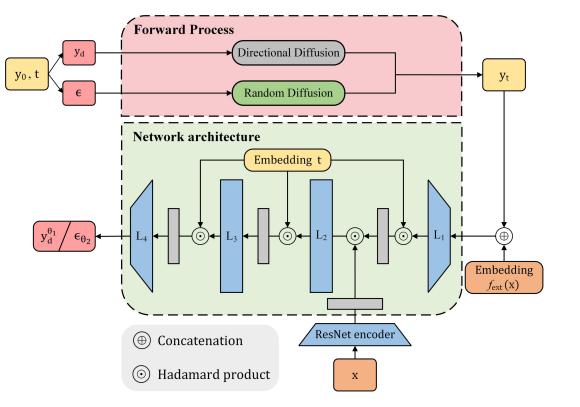


$$p_{\theta}\left(\mathbf{y}_{t-1} \mid \mathbf{y}_{t}, \mathbf{x}\right) := \mathcal{N}\left(\mathbf{y}_{t-1}; \mu_{\theta}, \hat{\sigma}_{t}^{2} \mathbf{I}\right). \tag{11}$$

$$\mathcal{L}_{d} = \left\| \left\| \mathbf{y}_{d} - \mathbf{y}_{d}^{\theta_{1}} \left(\mathbf{y}_{t}, \mathbf{y}_{n}, \mathbf{x}, t \right) \right\|^{2}, \tag{12}$$

$$\mathcal{L}_{\epsilon} = || \epsilon - \epsilon_{\theta_2} \left(\mathbf{y}_t, \mathbf{y}_n, \mathbf{x}, t \right) ||^2, \tag{13}$$

where
$$\hat{\mu}_t = y_t - \alpha_t y_d - \frac{\beta_t^2}{\bar{\beta}_t} \epsilon + \hat{\sigma}_t \nabla_{y_{t-1}} \log \hat{q} \left(\mathbf{x} | \mathbf{y}_{t-1}, \mathbf{y}_d \right)$$
 and $\hat{\sigma}_t = \frac{\beta_t^2 \bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}$.



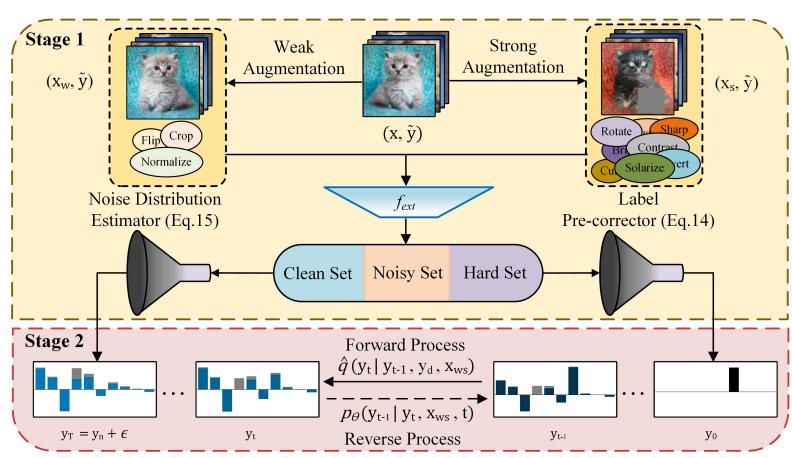
Pre-correction Method and DLD Model

Label Pre-correction for y_0

$$P(y_0 \mid \tilde{y}, x) = \begin{cases} \tilde{y} & \text{if } x \in \mathcal{D}_C, \\ \operatorname{argmax}(p_{ws}) & \text{if } x \in \mathcal{D}_N, \\ p_{ws} & \text{if } x \in \mathcal{D}_H. \end{cases}$$
(14)

Estimate Noise Distribution for y_n

$$P(y_n \mid \tilde{y}, x) = \begin{cases} 0 & \text{if } x \in \mathcal{D}_C, \\ \tilde{y} & \text{if } x \in \mathcal{D}_N, \\ \frac{|p_w - p_s|}{\sum |p_w - p_s|} & \text{if } x \in \mathcal{D}_H. \end{cases}$$
(15)



3. Experiments

□ Diverse baselines

- ✓ Co-teaching
- ✓ GCE
- ✓ DAC
- ✓ SEAL
- ✓ NCR
- ✓ DISC
- ✓ LRA-diffusion
- ✓ EPL
- **✓**

Evaluation metrics

- ✓ Test accuracy
- ✓ Label pre-correction accuracy

• Test accuracy

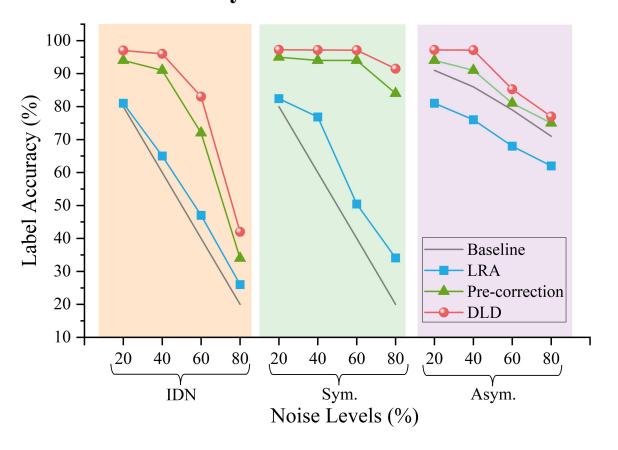
Table 1. Classification accuracies (%) of CIFAR datasets under different levels of IDN.

26.1.1	CIFAR-10			CIFAR-100		
Method	20%	40%	60%	20%	40%	60%
Co-teaching [17]	87.28±0.20	78.72±0.47	62.51±1.98	69.26±0.39	59.53±0.57	46.80±0.51
GCE [61]	86.44 ± 0.23	76.71 ± 0.39	60.76 ± 3.08	68.24 ± 0.27	55.76 ± 1.18	46.75 ± 2.46
DAC [45]	86.16 ± 0.13	74.80 ± 0.32	59.97 ± 0.90	68.70 ± 0.78	55.71 ± 1.01	46.29 ± 3.35
DMI [54]	86.57 ± 0.16	77.81 ± 0.85	69.94 ± 1.31	68.71 ± 1.21	57.99 ± 0.92	50.96 ± 2.08
SEAL [6]	87.79 ± 0.09	82.98 ± 0.05	70.07 ± 1.54	70.61 ± 0.19	61.18 ± 0.35	51.86 ± 1.32
NCR [22]	87.74 ± 0.15	83.03 ± 0.21	69.44 ± 1.01	70.68 ± 0.37	61.93 ± 0.54	49.13 ± 2.77
CC+DivideMix [62]	88.36 ± 0.11	84.18 ± 0.40	71.52 ± 1.73	70.09 ± 0.19	64.35 ± 0.35	53.20 ± 0.66
DISC [31]	90.68 ± 0.10	85.61 ± 0.32	73.59 ± 1.13	71.49 ± 0.13	64.46 ± 0.29	53.62 ± 0.51
LRA-diffusion+ResNet [4]	89.94 ± 0.15	86.73 ± 0.37	74.66 ± 1.02	72.35 ± 0.14	65.55 ± 0.30	54.43 ± 0.53
DLD+ResNet (Ours)	90.43 ± 0.12	87.17 ± 0.29	76.07 ± 1.10	72.60 ± 0.15	66.59 ± 0.31	55.72 ± 0.24
EPL+ViT [26]	95.95±0.17	93.01±0.33	76.16±1.18	72.24±0.12	67.20±0.20	55.59±0.13
LRA-diffusion+ViT [4]	96.65 ± 0.18	93.68 ± 0.34	78.12 ± 1.17	73.59 ± 0.13	67.67 ± 0.21	57.21 ± 0.12
DLD+ViT (Ours)	96.98±0.12	96.49±0.07	83.14±0.81	78.62 ± 0.11	76.03±0.14	69.57±0.17

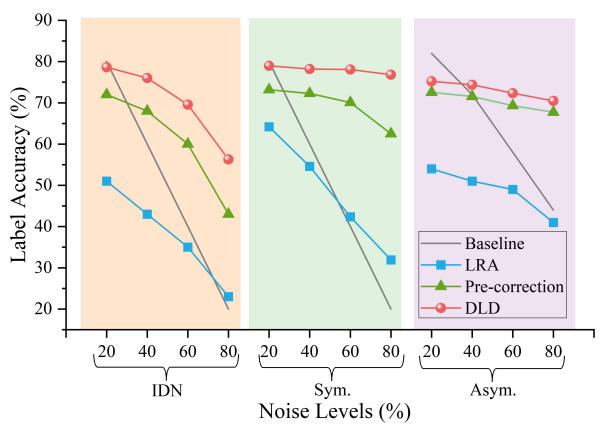
3. Experimental Results

Label pre-correction accuracy

✓ Results on Noisy CIFAR-10:



✓ Results on Noisy CIFAR-100:



3. Experimental Results

Results on Real-world Noisy Datasets:

Table 2. Classification accur

Table 4. Classification accuracies (%) on WebVision and ILSVRC2012 datasets.

	Method	
	CE [35]	
	GCE [61]	
	NCT [8]	
	DISC [31]	
	SSR [14]	
L	RA-diffusion [4]	
	J-ViT [9]	
	DLD (Ours)	

Method	WebVision	ILSVRC12	
Co-teaching [17]	63.58	61.48	
DivideMix [28]	77.32	75.20	
ELR [33]	77.78	70.29	
EPL [26]	78.77	76.51	
C2D [63]	79.42	78.57	
CC [62]	79.36	76.08	
DISC [31]	80.28	77.44	
LRA-diffusion [4]	84.16	82.56	
DLD (Ours)	84.51	83.74	

Accuracy
69.21
72.46
74.76
75.40
74.79
75.21
74.46
75.63
75.69

acies (%) on Clothing 1M.

4. Conclusion

- Propose dual diffusion architecture for LNL
- **Design fast label pre-correction method**
- **8** Refine feature conditioning

- How to address LNL problem from a generative perspective
- Recovering clean labels from feature with explicit noise information

Thanks for Listening:)

Feel free to contact Wenjian Wang and Senyu Hou via:

wjwang@sxu.edu.cn 202312407005@email.sxu.edu.cn

Address:

School of Computer and Information Technology, Shanxi University, Taiyuan 030006, P.R.China

