

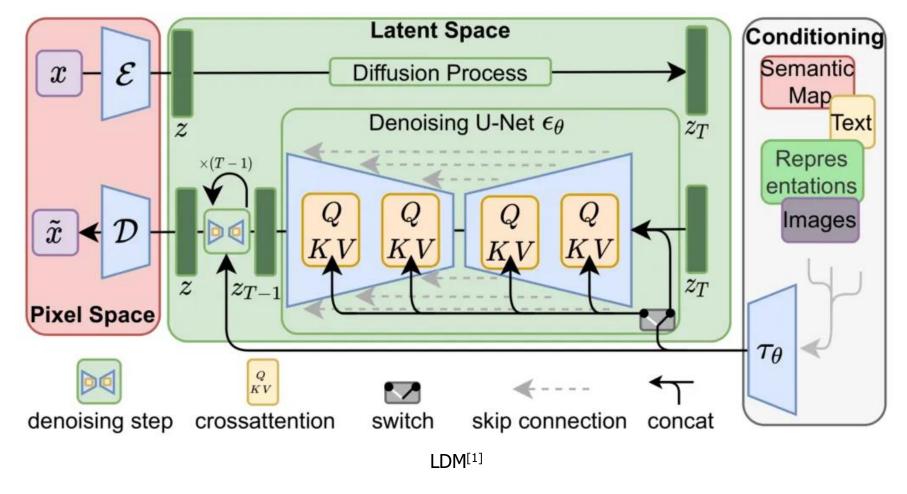
25' CVPR

Seung Ju Cha, Kwanyoung Lee, Ye-Chan Kim, Hyunwoo Oh, Dong-Jin Kim

Contents

- 1. Backgrounds
- 2. Related Works
- 3. Research Question
- 4. Method
- 5. Experiments
- 6. Conclusion

Backgrounds



Stable Diffusion(SD)^[1] takes natural prompts as input and can generate photo-realistic images

However...

SD sometimes struggles to generate accurate interactions between humans and objects^[2]

Exiting, Train

Walking, Bicycle

Holding, Backpack

Pouring, Bottle

The generated images do not match with our perceptual interactions

SD cannot reflect the intended interactions as these are detailed semantics when depicting images^[2]

CLIP has a strong bias towards objects or backgrounds^[3]

a girl skateboarding in a public place

a girl dancing in a public place

a girl running in a public place

a girl singing in a public place

a girl sitting on her skateboard in a public place

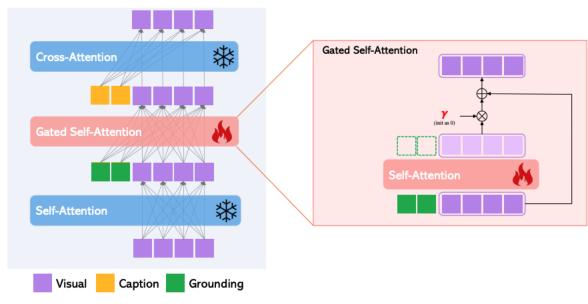
a girl falling off her skateboard in a public place

CLIP has **a lack of verb understandability** → affects the diffusion model

Related Works

To enhance the text understandability

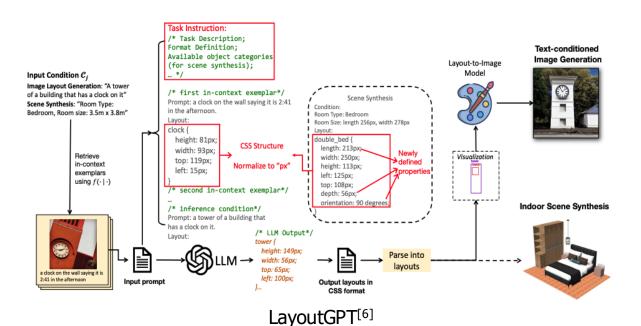
1. Layout (bounding box) based method

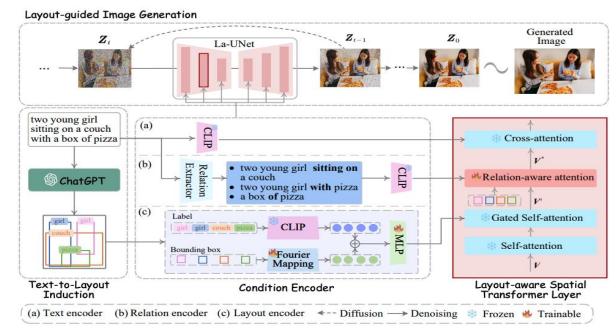


GLIGEN^[4] BoxDiff^[5]

Related Works

2. LLM based method

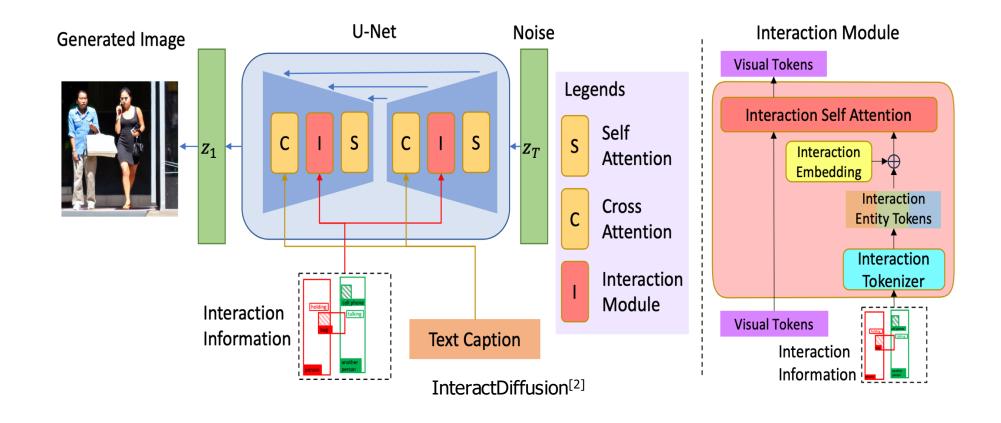




LayoutLLM-T2I^[7]

These methods focus on the spatial location of object relation not the interaction

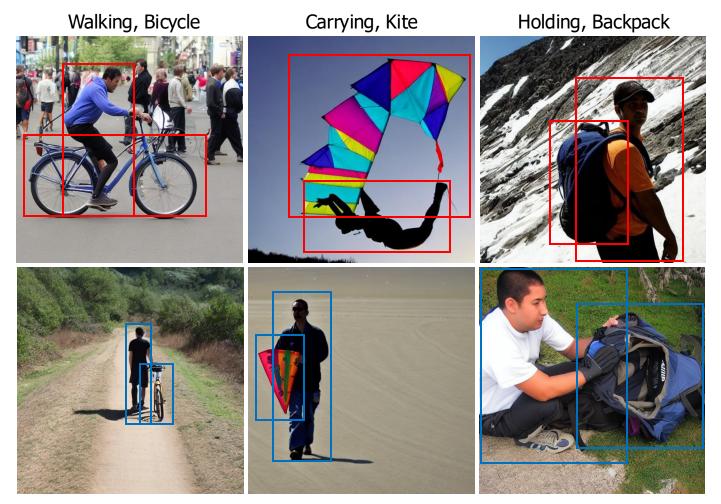
Related Works



Leverage Bounding Box corresponding to Human, Object

Training Interaction Self-Attention Layer

Research Question



Success and failure cases of InteractDiffusion^[2]

When given bounding boxes that **multiple interaction shares** e.g., walking/riding bicycle

Cannot distinguish the interaction word semantic difference

Heavily relies on the accurate bounding box

considering the precise boxes for interaction are labor-intensive

Research Question

Problem 1. Still has problem in distinguishing the semantic differences between interaction words (verbs)

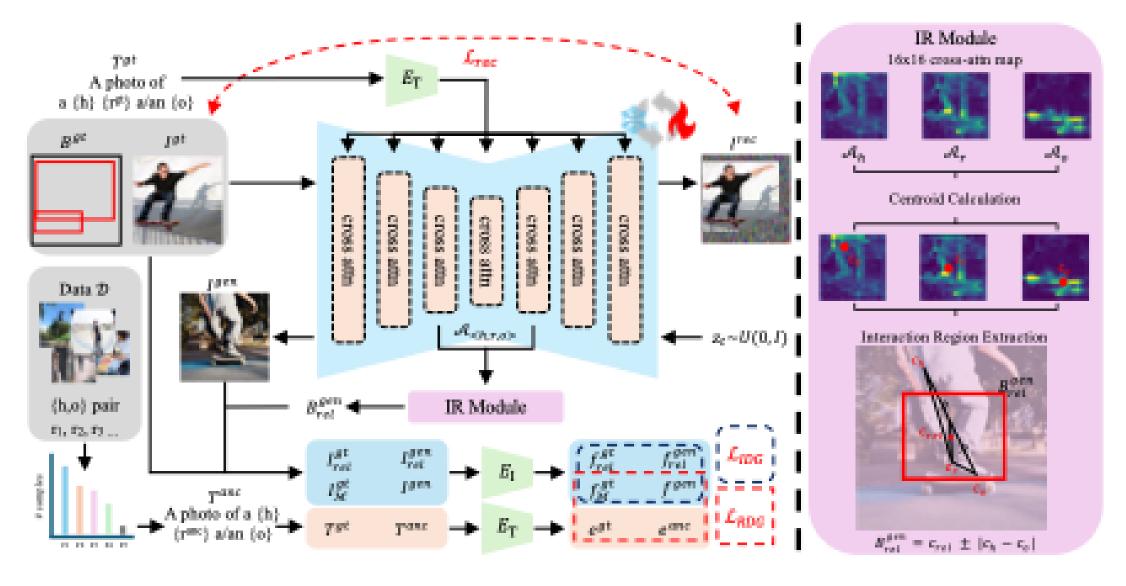
Problem 2. The generated images **heavily rely on precise bounding boxes which is labor-intensive** to provide

Can we enhance the understandability of interaction words in SD in a more generalized way?

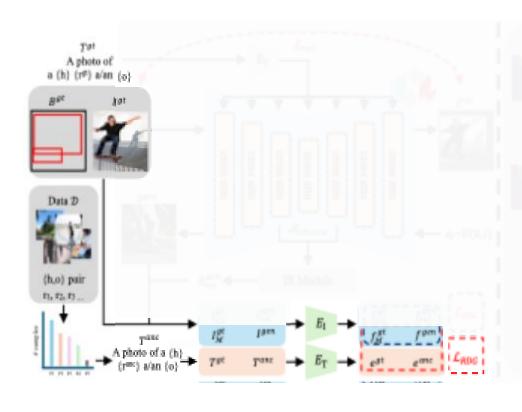
Propose VerbDiff with two additional guidances

- 1. Relation Disentanglement Guidance based on frequency-based anchor text
- 2. Interaction Direction Guidance with IR modules that capture detailed interaction regions

Methods



Relation Disentanglement Guidance



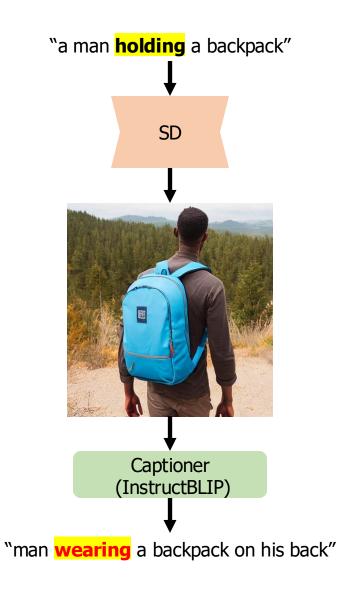
 \mathcal{L}_{triple} distinguish the semantic difference between interaction words disentangles the input words from the frequency-based anchor word

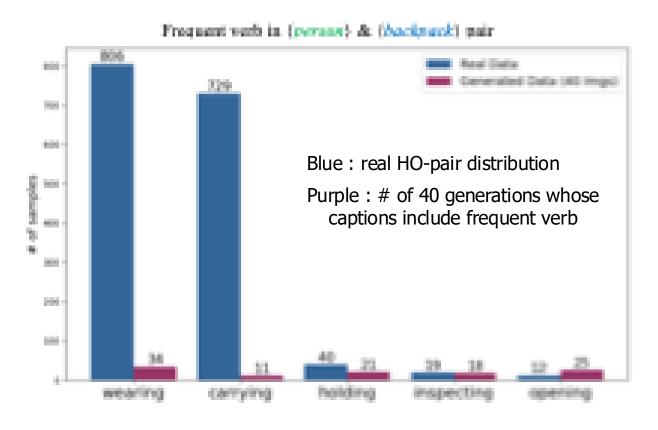
$$\mathcal{L}_{triple} = \max(0, m + sim(f^{gen}, e^{gt}) - sim(f^{gen}, e^{anc}))$$

 \mathcal{L}_{align} aims to control the accurate interaction in image level

$$\mathcal{L}_{align} = 1 - \frac{f_{\mathcal{M}}^{gt} \cdot f^{gen}}{|f_{\mathcal{M}}^{gt}||f^{gen}|}$$

Frequency-based anchor interaction word





SD tends to generate the images that matches with the most frequent verb!

Define the anchor interaction word as the most frequent verb along each h,o pair

$$r^{anc} = \arg\max_{r \in R_o} \mathcal{C}(r|o)$$

Adaptive Interaction Modification Number

Each h,o pair has different kinds of verbs and different number of images

The more the sample, the more the model effected

e.g., carrying backpack >> opening backpack

To balance the modification extent

$$\alpha(k) = \frac{1 - \beta^{n_k}}{1 - \beta}$$

$$\beta = \frac{N-1}{N}$$

 n_k number of samples in class k N: total number of samples in dataset

$$\mathcal{L}_{RDG} = \alpha \cdot (\mathcal{L}_{tiple} + \mathcal{L}_{align})$$
 α : adaptive interaction modification number

Interaction Direction Guidance

w/ Relation Disentanglement Guidance (RDG)

The images **misalign with human expectations**, especially in the **local region**

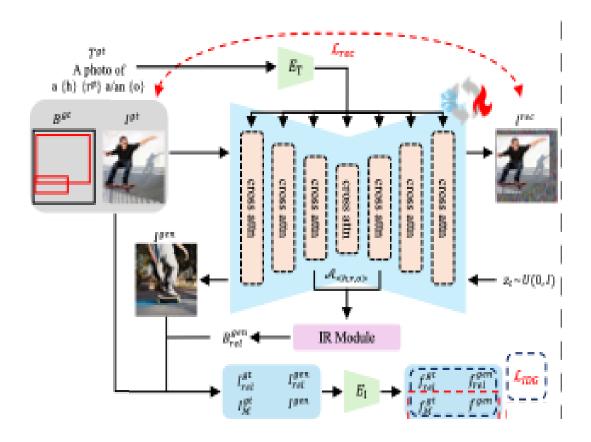
RDG focus on aligning global interaction feature

To focus on the finer, localized interaction region

Apply Interaction Direction Guidance(IDG)

Leveraging the interaction region extracted from Interaction Region module

Interaction Direction Guidance



Modify the CLIP direction loss into the interaction region loss

$$L_{IDG} = 1 - \frac{\left(f_{\mathcal{M}}^{gt} - f^{gen}\right) \cdot \left(f_{rel}^{bias}\right)}{\left|f_{\mathcal{M}}^{gt} - f^{gen}\right| \left|f_{rel}^{bias}\right|}$$

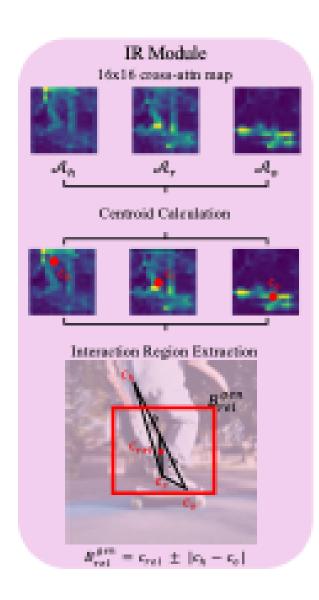
$$f_{rel}^{bias} = f_{rel}^{gt} - f_{rel}^{gen}$$

Can extract interaction region from ground-truth image

How to extract interaction regions from generated images?

Propose Interaction Region module (IR module)

Interaction Region Module



Cross-attention maps in SD reflect the existence of each token in prompts^[9]

Extract 16x16 resolution map corresponding to each human, relation, object token

Calculate the centroid $c_{h,r,o}$ of each aggregated $\mathcal{A}_{h,r,o}$

$$c = \frac{1}{\sum_{h,w} \mathcal{A}} \left[\sum_{h,w}^{h} w \cdot \mathcal{A} \right]$$

Define c_{rel} to be the centroid of the triangle defined by three centroids

Extract interaction region B_{rel}^{gen}

$$B_{rel}^{gen} = c_{rel} \pm |c_h - c_o|_2^2$$

Training only the cross-attention layers in SD

$$\mathcal{L}_{rec} = \mathbb{E}_{z,\epsilon \sim \mathcal{N}(0,1),t} \left[|| (\epsilon \odot \mathcal{M} - \epsilon_{\theta}(z_t, t, T) \odot \mathcal{M}) || \right]$$

$$\mathcal{L}_{total} = \lambda_1 \cdot \mathcal{L}_{rec} + \lambda_2 \cdot \mathcal{L}_{RDG} + \lambda_3 \cdot \mathcal{L}_{IDG}$$

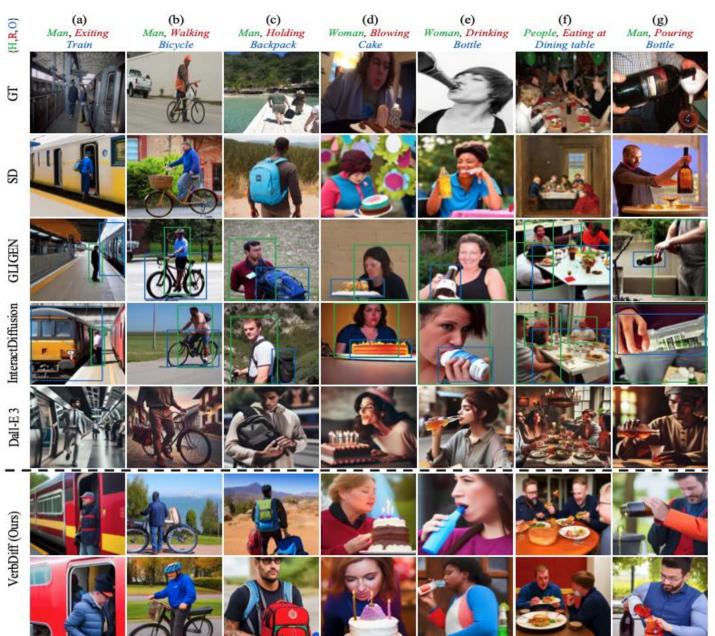
Evaluations

Metric

- 1.CLIP & Sentence-BERT[10] similarity
- 2.HOI Classification Accuracy
- 3.VQA-Score^[11]

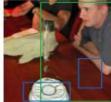
- 1. Extract caption from generated image (InstrcutBLIP^[12]) and calculate the embedding cosine similarity
- 2. HOI classification accuracy (K.O.: assume the object is correct, only compare the verb, Def.: both object and verb must be accurate)
- 3. The average of probability that the model answer yes to a given question

Single Interaction

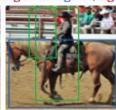


Multi-Interactions

"A woman holding a backpack and a book"



"A man holding a wine glass, lighting a cake"



"A man and a woman riding a same horse"

"An old man and a young girl riding a tandem bicycle"

Stable Diffusion GLIGEN InteractDiffusion VerbDiff (Ours)

"A photo of a man walking a bicycle on the street, carrying an umbrella"

"A basketball player jumping and throwing a basketball and a man blocking the ball"

Experiments

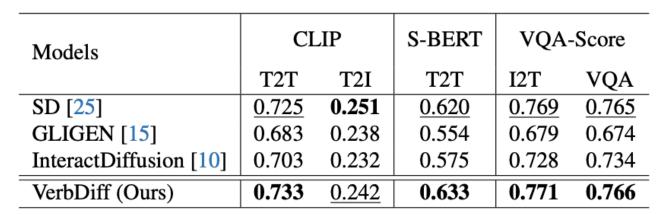


Table 1. Similarity comparison between VerbDiff and other models. We evaluate scores on CLIP, S-BERT [24] and a large vision-language alignment benchmark VQA-Score [17].

Models	SOV-STG-S (Acc ↑)				SOV-STG-Swin-L (Acc↑)			
	Def.		KO.		Def.		KO.	
	Full	Rare	Full	Rare	Full	Rare	Full	Rare
SD [25]	16.09	4.59	18.22	4.85	20.08	8.07	21.69	8.66
GLIGEN [15]	15.88	4.85	17.91	5.24	17.83	7.00	19.35	7.57
InteractDiffusion [10]	<u>19.67</u>	<u>7.00</u>	21.31	<u>7.69</u>	23.53	<u>10.27</u>	<u>24.86</u>	<u>11.18</u>
VerbDiff (Ours)	22.59	7.62	24.79	7.83	27.05	12.60	28.43	13.18

Table 2. **HOI accuracy comparison between VerbDiff and previous methods.** Def. and KO. refer to Default and Known Object.

Figure 3. **VQA-score result examples.** We measure the probability that the VQA model answers "yes" for questions based on four verbs associated with the "bicycle" class. The verb with the highest score is highlighted in red.

Ablations

VerbDiff	\mathcal{L}_{rec}	\mathcal{L}_{triple}	\mathcal{L}_{align}	\mathcal{L}_{IDG}	CLIP	S-BERT	HOI Acc	
					T2T	T2T	Def.	KO.
(a)	✓				0.691	0.582	19.38	20.89
(b)	✓	✓	✓		0.700	0.589	20.32	21.87
(c)	✓			✓	0.699	0.588	20.21	21.67
(d)	✓	✓		✓	0.710	0.610	23.39	24.51
All (Ours)	✓	✓	✓	✓	0.733	0.633	27.05	28.43

Table 3. **Ablation of the VerbDiff guidance settings.** We score the similarity and HOI accuracy on the Full setting. We use the SOV-STG-Swin-L model. Combining all the proposed loss functions shows the best performance.

