[SplineGS]

Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video

Jongmin Park^{1*}

Minh-Quan Viet
Bui^{1*}

Juan Luis Gonzalez Bello¹

Jaeho Moon¹

Jihyong Oh^{2†}

Munchurl Kim^{1†}

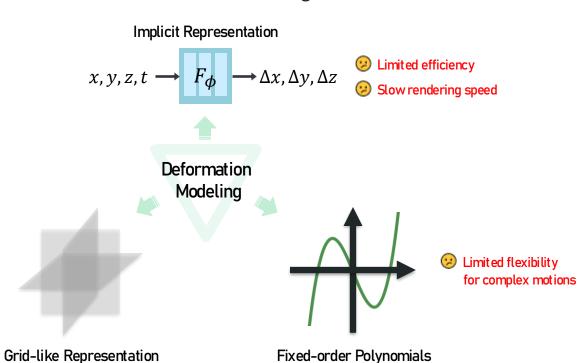
1: KAIST, 2: Chung-Ang Univ.

* : Co-first authors (equal contribution), † : Co-corresponding authors

Dynamic Novel View Synthesis (Dynamic NVS)

Goal: To generate video frames from any viewpoint in a dynamic scene.

- Requires accurate motion modeling of moving objects.
- → Demands precise estimation of camera parameters.

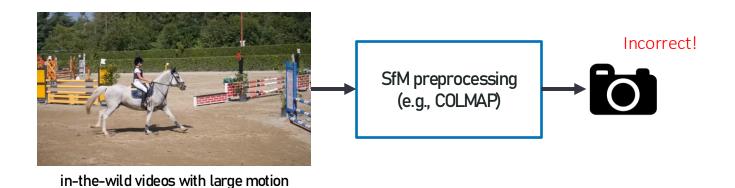


Motivation

Limitation of prior models

Limited expressiveness for fine-grained motions

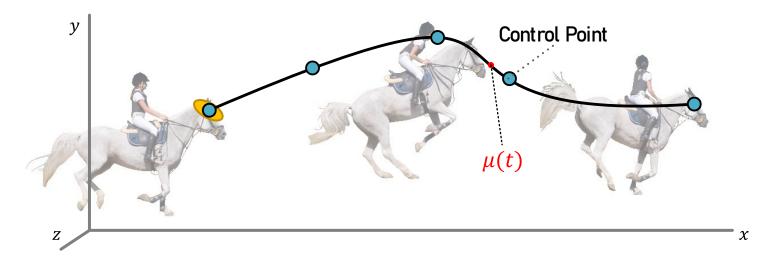
Existing deformation methods face several challenges.



Motivation

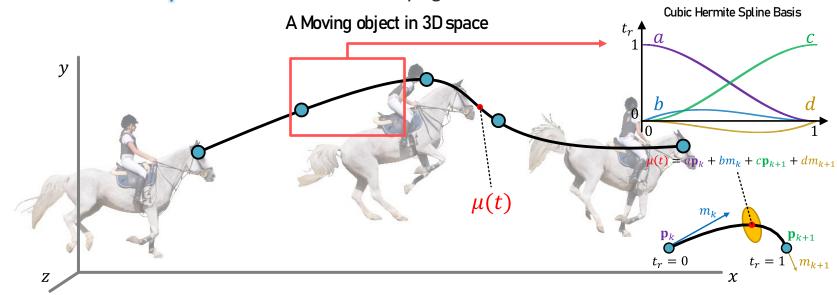
Limitation of prior models

- → Most dynamic NVS methods rely on Structure-from-Motion (SfM) algorithms (e.g., COLMAP).
- → However, it often produce imprecise prediction for in-the-wild monocular videos.

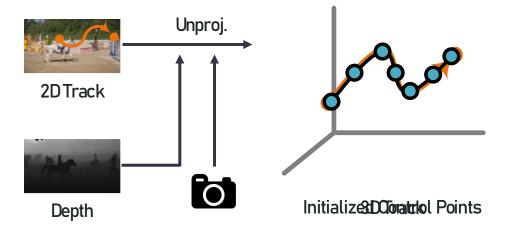


Motion-Adaptive Spline for dynamic 3D Gaussians

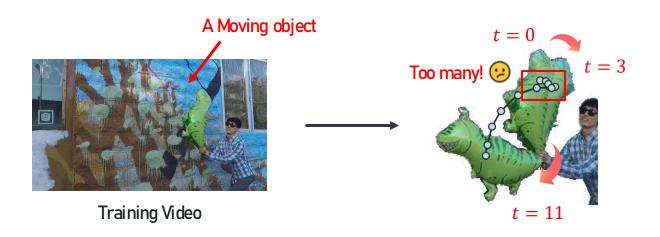
→ Cubic Hermite spline functions for time-varying smooth and continuous deformation.


A Moving object in 3D space

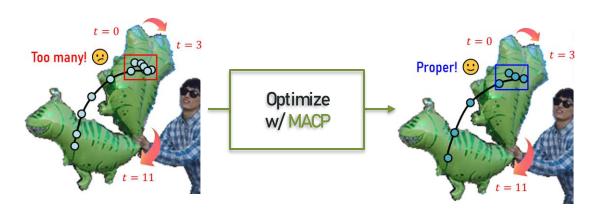
Motion-Adaptive Spline for dynamic 3D Gaussians

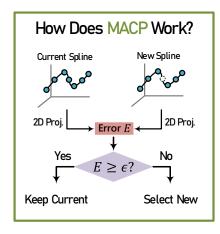

Cubic Hermite spline functions for time-varying smooth and continuous deformation.

Motion-Adaptive Spline for dynamic 3D Gaussians


- → To initialize the control points, we leverage 2D tracking* and metric depth**.
- → We lift 2D tracks into 3D space using metric depth and camera parameters.

Motion-Adaptive Spline for dynamic 3D Gaussians


- → An excessive number of control points may cause over-fitting and slow rendering speed.
- → The number of control points should be adaptively adjusted based on object dynamics.



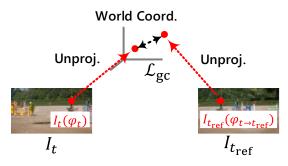
Motion-Adaptive Control points Pruning (MACP)

- → MACP can generate sparser control points while ensuring no performance degradation.
- → MACP reduces the number of control points and replaces the original set if the error is acceptable.

Camera Parameter Estimation

SplineGS estimates camera parameters for joint optimization with the Gaussian attributes.

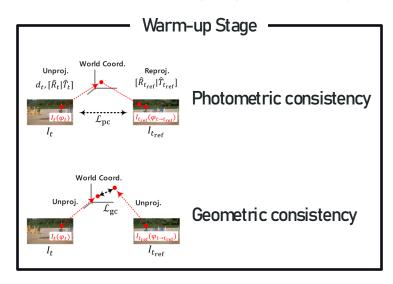
$$\gamma(t) \longrightarrow F_{\theta} \longrightarrow [\hat{R}_t | \hat{T}_t]$$
 Learn. Param. $\longrightarrow \hat{f}$ Camera Extrinsic

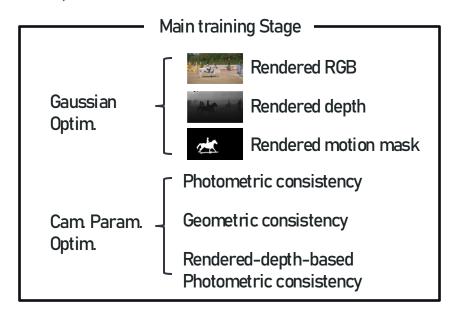


Camera Parameter Estimation

- → SplineGS estimates camera parameters for joint optimization with the Gaussian attributes.
- To enforce two types of consistency: Photometric and Geometric.

Photometric consistency




Geometric consistency

Optimization

- Two-stage optimization
 - → Warm-up stage: To optimize camera parameters only
 - → Main training stage: To jointly optimize camera parameters and Gaussian attributes

Novel View Synthesis

On Nvidia Dataset

Novel View Synthesis

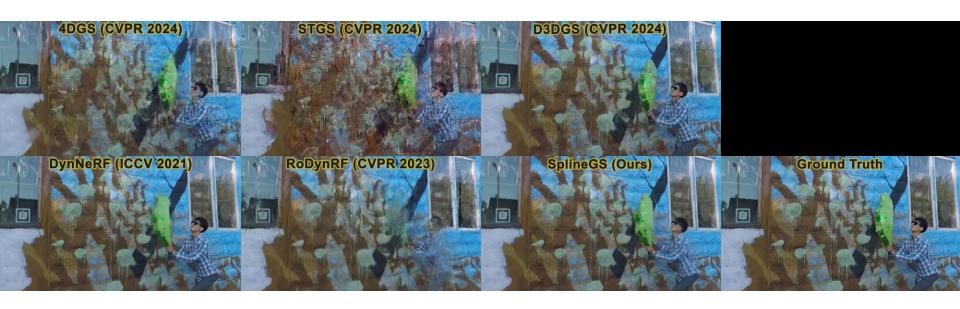
On Nvidia Dataset

 $1^{st}/2^{nd}$

Methods	PSNR†/LPIPS↓	FPS↑	Training Time (hr) ↓	Methods	PSNR↑/LPIPS↓	FPS↑	Training Time (hr) ↓
DynNeRF (ICCV'21)	26.10 / 0.082	0.05	>24	DynPoint (NeurIPS'23)	26.53 / 0.068	0.8	0.5
D3DGS (CVPR'24)	23.02 / 0.195	25	1.0	RoDynRF (CVPR'23) w/ COLMAP	25.89 / 0.067	0.45	>24
4DGS (CVPR'24)	23.64 / 0.123	95	0.25	RoDynRF (CVPR'23) w/o COLMAP	25.38 / 0.079	0.45	>24
SP-GS (ICML'24)	25.70 / 0.247	180	6.0	MoSca (arXiv'24) w/ COLMAP	26.55 / 0.070	40	0.8
Casual-FVS (ECCV'24)	24.57 / 0.081	48	0.25	MoSca (arXiv'24) w/o COLMAP	26.61 / 0.069	40	1.0
E-D3DGS (ECCV'24)	23.36 / 0.129	45	2.6	Ours (SplineGS) w/ COLMAP	26.90 / 0.060	400	0.5
Shape-of-Motion (arXiv'24)	24.21 / 0.102	255	1.1	Ours (SplineGS) w/o COLMAP	27.21 / 0.053	400	1.5

Novel View Synthesis

On DAVIS Dataset (Spiral & Zoom)


RoDynRF (CVPR'23)

Ours (SplineGS)

- **Novel View & Time Synthesis**
 - On Nvidia Dataset

Novel View & Time Synthesis

On Nvidia Dataset

 $1^{st}/\underline{2^{nd}}$

Methods	PSNR↑	LPIPS↓	tOF↓
DynNeRF (ICCV'21)	23.36	0.219	0.921
4DGS (CVPR'24)	17.07	0.459	6.314
D3DGS (CVPR'24)	19.63	0.343	3.225
STGS (CVPR'24)	15.72	0.474	2.105
RoDynRF (CVPR'23)	21.58	0.221	2.138
Ours (SplineGS)	25.92	0.098	0.703

3D Motion Tracking

On DAVIS Dataset

D3DGS (CVPR'24)

STGS (CVPR'24)

Analysis of MACP's Efficacy Complex motion **More Control Points** MAX 40% % of Gaussians 20% 0% 7 8 9 10 11 12 # of Ctrl. Pts. ntrol Point 40% Seans 20% o & 0% ble Mo 7 8 9 10 11 12 # of Ctrl. Pts.

Few Control Points

Simple Translation

[SplineGS]

Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video

Thank You!

For more details, please visit here!

