

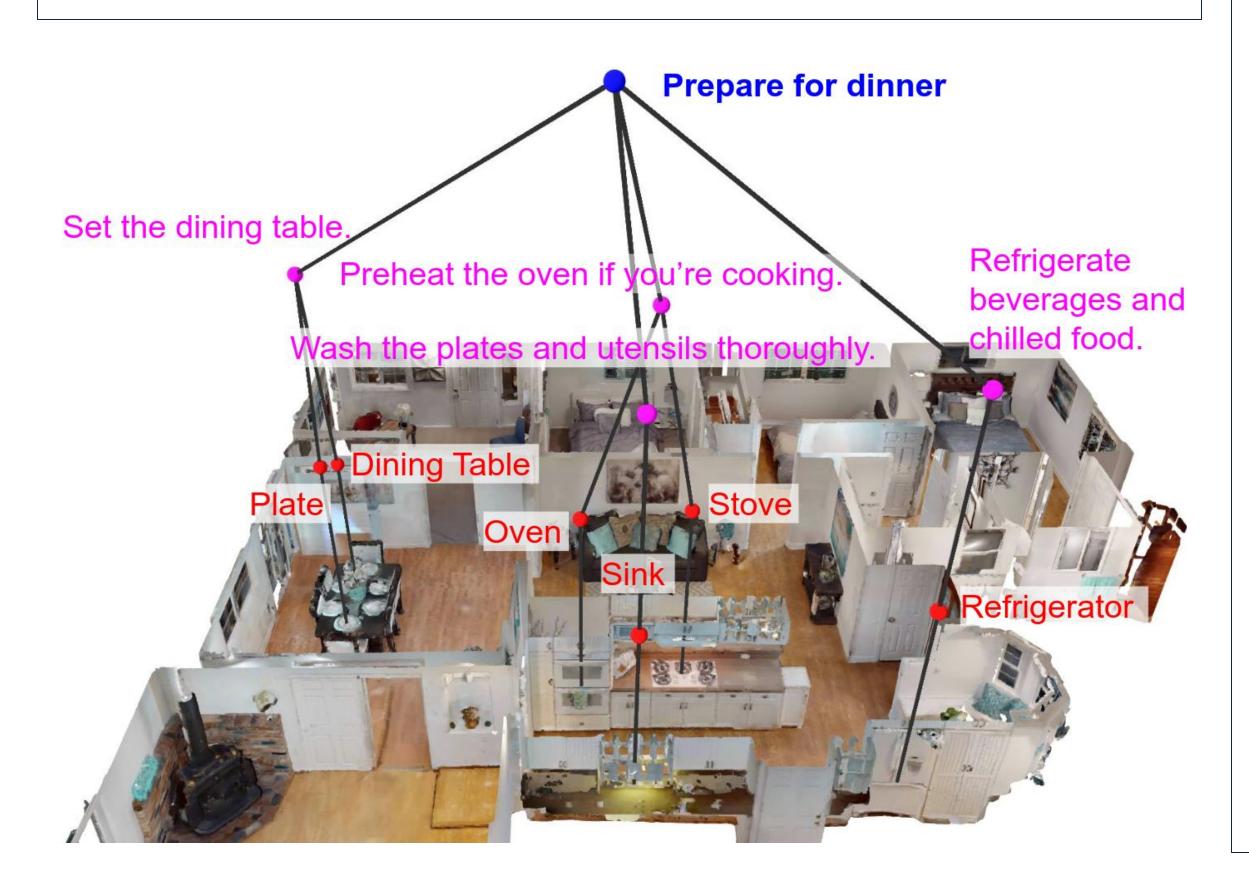
ASHiTA: Automatic Scene-grounded Hlerarchical Task Analysis

Yun Chang¹, Leonor Fermoselle², Duy Ta², Bernadette Bucher³, Luca Carlone¹, Jiuguang Wang²

¹Massachusetts Institute of Technology, ²Robotics and Al Institute, ³University of Michigan

Papei

Research Question:


How can we enable robots to understand **complex high-level commands** and **ground** them in **real-world 3D scenes**?

Contributions:

- Generalize the Information Bottleneck (IB) principle to build a hierarchical, task-defined 3D scene graph based on a given task decomposition.
- Iterative framework alternating LLM-based task decomposition and scene graph construction to generate a scene grounded task hierarchy.

Key Results:

- State-of-the-art grounding accuracy of task hierarchies to task-relevant objects, outperforming existing zero-shot models.
- Outperforms LLM + open-set scene graph baselines in scene-grounded task hierarchy generation.

Methodology High-level Instruction RGB-D Input

Encoded **3D primitives** and with **initial task hierarchy**

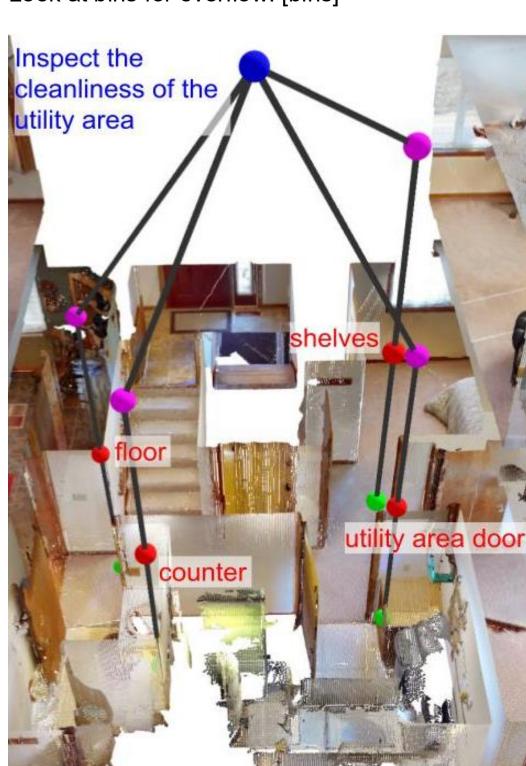
Iterative scene grounding (H-IB) and task hierarchy refinement

Hierarchical Information Bottleneck (H-IB):

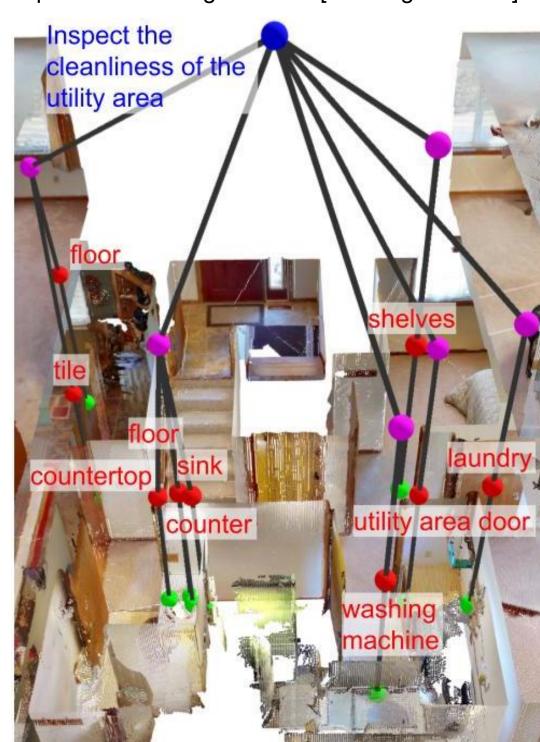
 $\min_{\mathbb{P}(\mathcal{S}|\mathcal{S}_0)} I(\mathcal{S}_0;\mathcal{S}) - eta I(\mathcal{T};\mathcal{S})$

Generalization to *n*hierarchical layers

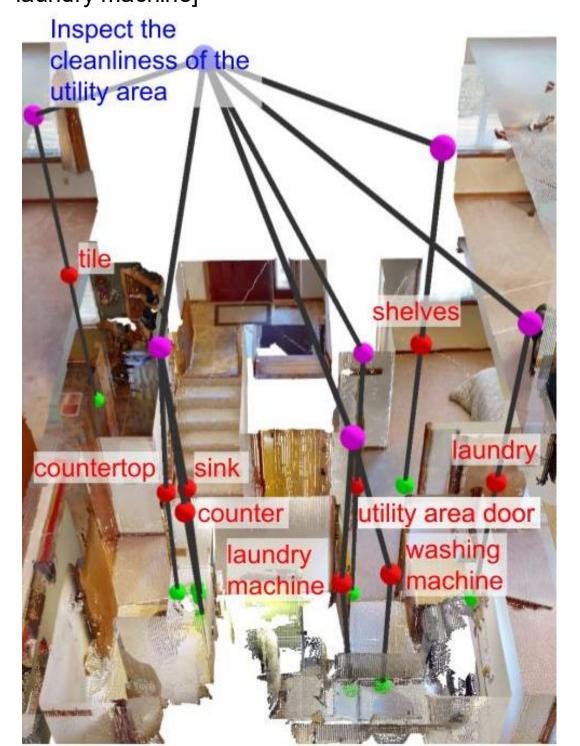
$$\min_{\mathcal{S}_k|\mathcal{S}_{k-1}), k=1...n} \sum_{k=1}^n I(\mathcal{S}_{k-1}; \mathcal{S}_k) - \beta \sum_{k=1}^n I(\mathcal{T}_k; \mathcal{S}_k)$$


Iterative multi-layer update steps $\begin{cases} p_{\tau}(s_{k}|s_{k-1}) = \frac{1}{Z}p_{\tau}(s_{k})\exp(-\beta d) \\ p_{\tau+1}(s_{k}) = \sum_{s_{k-1}}p_{\tau}(s_{k-1})p_{\tau}(s_{k}|s_{k-1}) \\ p_{\tau+1}(t_{k}|s_{k}) = \sum_{s_{k-1}}p_{\tau}(t_{k}|s_{k-1})p_{\tau}(s_{k-1}|s_{k}) \end{cases}$

$$d = D_{KL}(p_{\tau}(t_k|s_k)||p_{\tau}(t_k|s_{k-1}))$$


$$+ \sum_{i=k+1}^{n} \sum_{s_i} p_{\tau}(s_i|s_k) D_{KL}(p_{\tau}(t_i|s_i)||p_{\tau}(t_i|s_{k-1}))$$

Iterative Refinement:

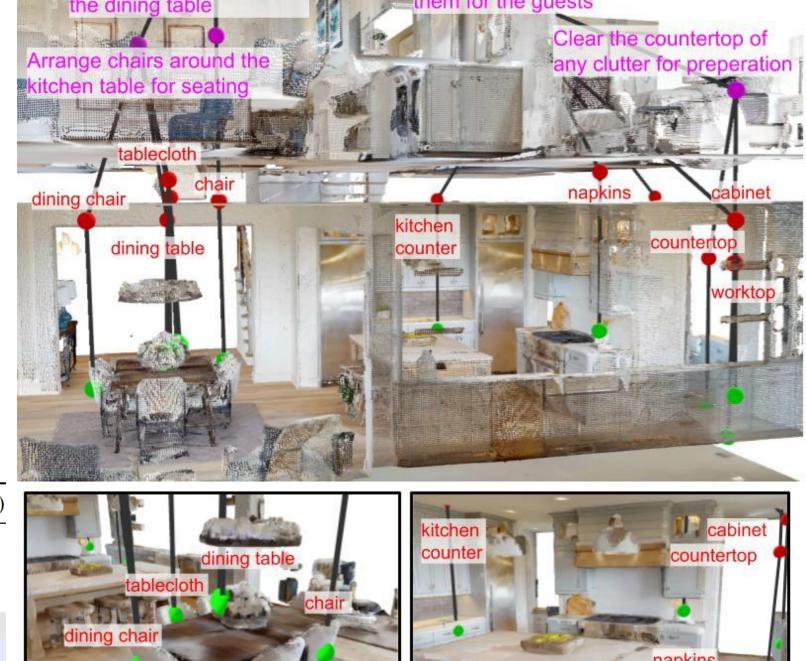

Open the utility area door: [utility area door]
Check the floor for debris: [floor]
Examine shelves for dust accumulation: [shelves]
Inspect counter for spills: [counter]
Look at bins for overflow: [bins]

Open the utility area door: [utility area door]
Check the floor for debris: [floor, tile]
Examine shelves for dust accumulation: [shelves]
Inspect counter for spills: [counter, sink, countertop]
Check for dirty laundry: [laundry]
Inspect the washing machine:[washing machine]

Open the utility area door: [utility area door]
Check the floor for debris: [tile]
Examine shelves for dust accumulation: [shelves]
Inspect counter for spills: [counter, sink, countertop]
Check for dirty laundry: [laundry]
Inspect the washing machine:[washing machine, laundry machine]

Experiments:

Method	s-acc (%)	t-acc (%)
3D-VisTA [52]	25.3	10.3
PQ3D [53]	24.4	9.7
ASHiTA	28.71	12.13
ASHiTA + Txt Emb.	65.4	39.33
GPT w/ GT labels [50]	75.9	52.1


Table 1. Evaluation of grounding using the SG3D HM3DSem dataset [1] with ground truth instances against SOTA zero-shot models [2, 3].

Method	s-acc (%)	t-acc (%)
Hydra [14] + GPT	8.18	2.44
HOV-SG [45]	8.98	1.95
ASHiTA	21.7	8.78
Hydra (GT Seg) + GPT	14.2	6.34

Table 2. Evaluation of grounding on 8 scenes from the SG3D HM3DSem dataset [1] with RGB-D Input against LLM + Scene Graph baselines [4, 5]

Method	s-rec (%)	s-prec (%)	t-acc (%
Hydra + GPT	9.43	15.51	4.88
HOV-SG + GPT	4.55	4.87	1.95
ASHiTA	10.39	20.6	9.27
ASHiTA (GT Pos)	15.12	34.47	16.59
Hydra (GT Seg) [14] + GPT	17.06	18.98	14.63
ASHiTA (GT Pos + Txt Emb)	38.71	34.39	36.1

Table 3. Evaluation of Hierarchical Task Analysis. Against LLM + Scene Graph baselines [4, 5]

Limitations / Future Work

- Generated task hierarchies are not guaranteed to be feasible or complete to accomplish the high-level tasks
- The structure of task hierarchy prevents objects from being shared across subtasks, reducing flexibility and descriptiveness.
- Future direction: 1) Integrate classical planning techniques to validate and refine subtask sets to ensure task completeness.
 2) Bridge the task hierarchy generation with robot skills.

References

- [1] Zhuofan Zhang, Ziyu Zhu, Pengxiang Li, Tengyu Liu, Xiao-jian Ma, Yixin Chen, Baoxiong Jia, Siyuan Huang, and Qing Li. Task-oriented sequential grounding in 3d scenes. ArXiv preprint: 2408.04034, 2024.
- [2] Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan Huang, and Qing Li. 3d-vista: Pre-trained transformer for 3d vision and text alignment. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2899–2909, 2023.
- [3] Ziyu Zhu, Zhuofan Zhang, Xiaojian Ma, Xuesong Niu, Yixin Chen, Baoxiong Jia, Zhidong Deng, Siyuan Huang, and Qing Li. Unifying 3d vision-language understanding via promptable queries. arXiv preprint: 2405.11442, 2024.
- [4] N. Hughes, Y. Chang, and L. Carlone. Hydra: a real-time spatial perception engine for 3D scene graph construction and optimization. In Robotics: Science and Systems (RSS), 2022.
- [5] Abdelrhman Werby, Chenguang Huang, Martin Büchner, Abhinav Valada, and Wolfram Burgard. Hierarchical openvocabulary 3d scene graphs for language-grounded robot navigation. Robotics: Science and Systems (RSS), 2024.