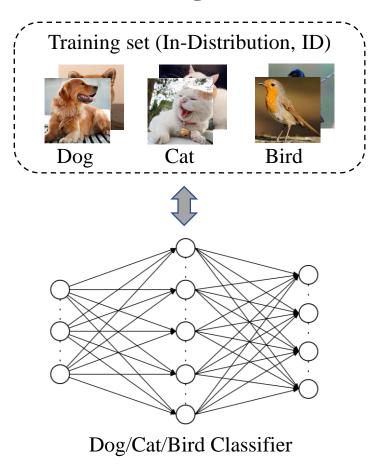
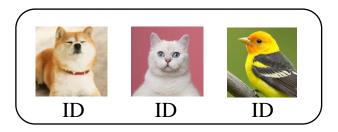


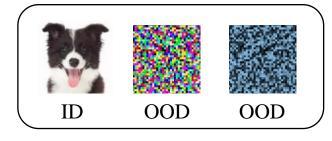
Simplification Is All You Need against Out-of-Distribution Overconfidence

Keke Tang^{1*}, **Chao Hou**^{1*}, Weilong Peng¹, Xiang Fang², Zhize Wu³, Yongwei Nie⁴, Wenping Wang⁵, Zhihong Tian¹

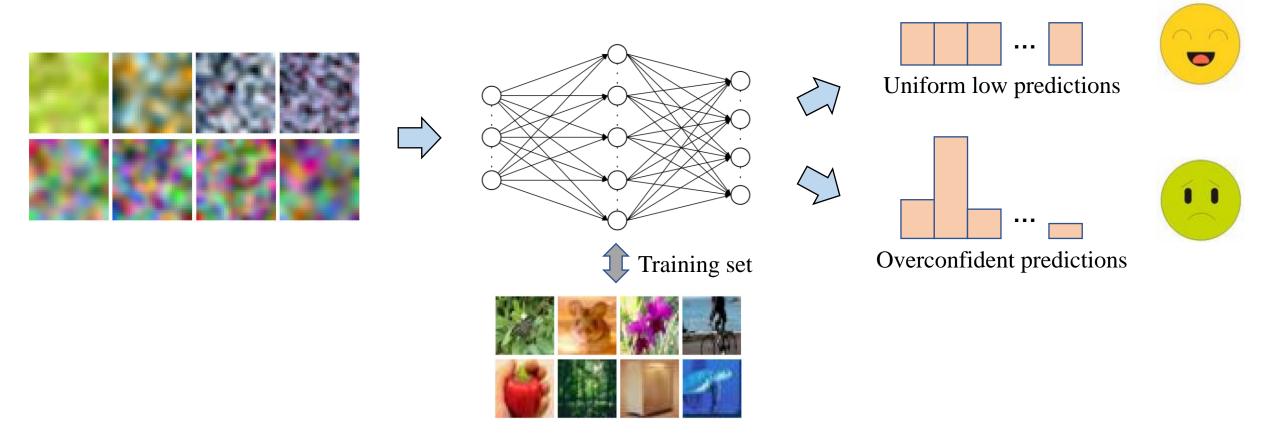


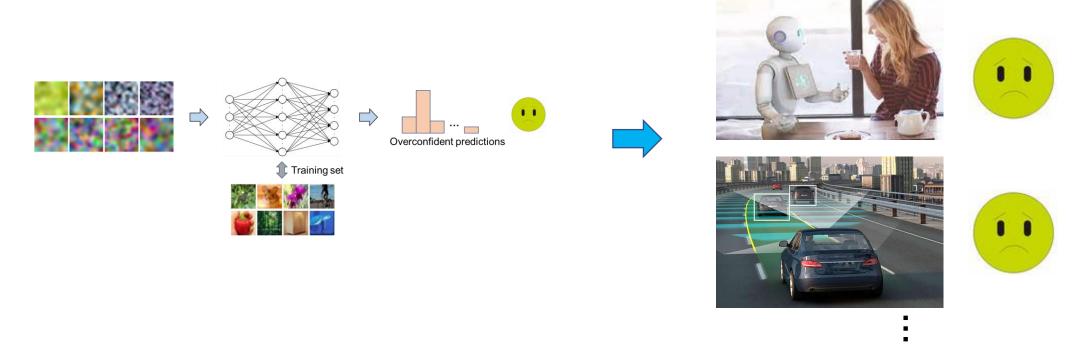


Deficiencies of DNN Closed World Assumption


Training Time

Test Time


In the **closed world**, the test data has the same distribution as the training data.


In the **open world**, there may exist test data with a distribution different from the training data.

(Unseen, Unknown)

OOD Overconfidence Issue

Influence of OOD Overconfidence Issue

Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem

[atthias Hein Andriushchenko Julian Bitterwa

Matthias Hein Saarland University University of 7

Julian Bitterwolf University of Tübingen

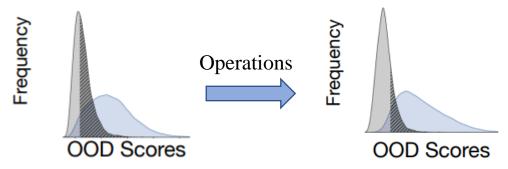
Related Work

OOD detection

Designing Detection Score

$$G_i(\mathbf{x}; \theta_i) = \begin{cases} \text{in,} & \text{if } S_i(\mathbf{x}; \theta_i) \ge \gamma_i \\ \text{out,} & \text{if } S_i(\mathbf{x}; \theta_i) < \gamma_i \end{cases}$$

MSP [Hendrycks et al. 2016]


Mahalanobis metrics [Lee et al. 2018]

Energy [Liu et al. 2020]

FeatureNorm [Yu et al. 2023]

:

Widen the Differentiation

ODIN [Liang et al. 2018]

ReAct [Sun et al. 2021]

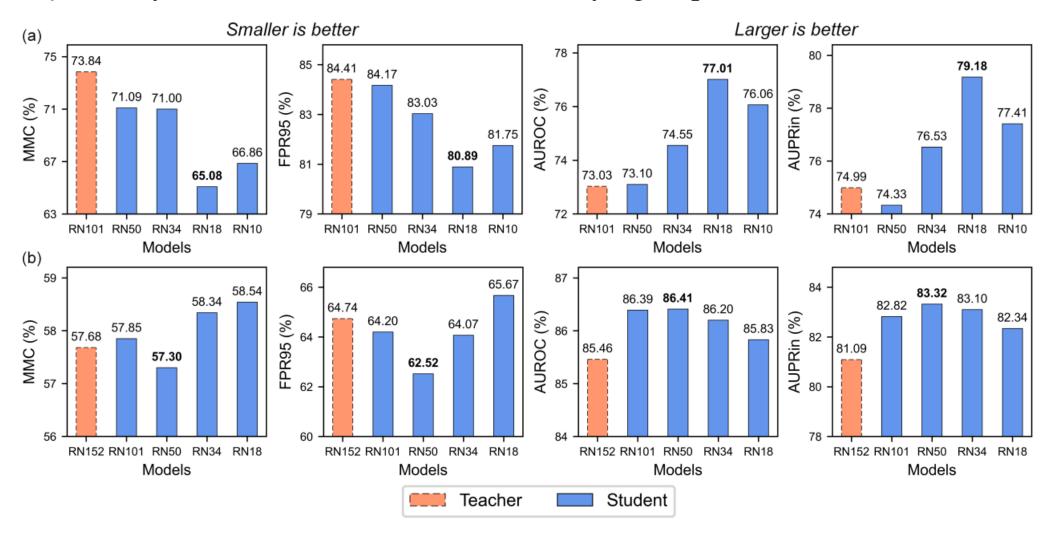

DICE [Sun et al. 2022]

BATS [Zhu et al. 2022]

•

Motivation

DNNs can indeed be regarded as <u>complex systems</u>, often characterized by <u>over-parameterization</u>. This excessive complexity can cause DNNs to exhibit emergent behaviors, leading to unpredictable outcomes, e.g., <u>OOD overconfidence Issue</u>.



Capacity - Effectiveness of Knowledge Distillation

Table 1. Comparison of MMC and OOD detection performance for student models (ResNet-18) distilled from a teacher model (ResNet-50) using different knowledge distillation methods on CI-FAR datasets. Results are averaged across multiple OOD datasets.

ID		CIFAR-1	0	CIFAR-100				
Method	MMC↓	FPR95↓	AUROC↑	MMC↓	FPR95↓	AUROC↑		
Teacher	79.58	54.23	91.78	72.12	83.67	74.73		
KD [22]	76.81	49.81	92.42	62.69	79.77	76.31		
FitNet [37]	79.46	50.58	92.26	60.60	77.53	77.78		
AT [64]	77.90	48.09	92.69	64.11	82.14	75.51		
SP [48]	78.81	50.52	92.22	58.75	77.12	80.01		

Capacity - Analysis of Student Networks with Varying Capacities

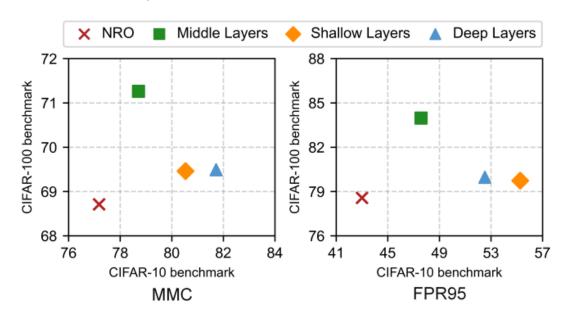
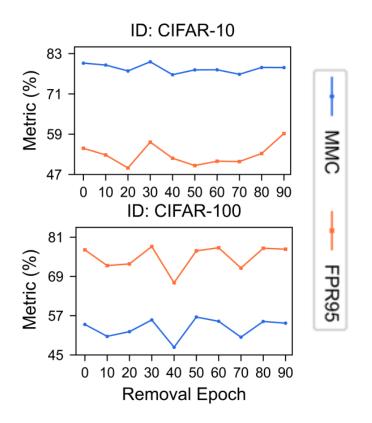
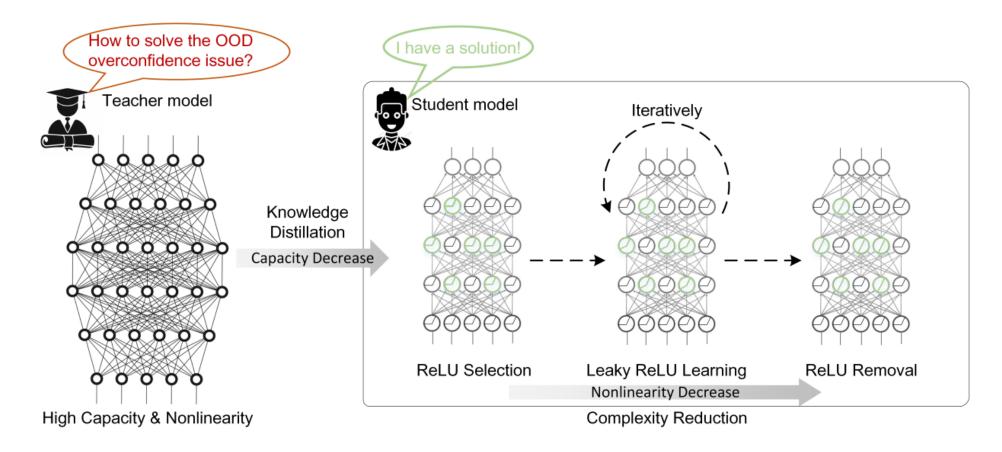

Nonlinearity - Analysis of Different Removal Proportions

Table 2. Comparison of MMC and OOD detection performance for different ReLU removal proportions using ResNet-101 as the classifier. Results are averaged across multiple OOD datasets.

ID		CIFAR-10	0	CIFAR-100				
Ratio	MMC↓	FPR95↓	AUROC↑	MMC↓	FPR95↓	AUROC↑		
0%	83.46	51.92	92.53	73.84	84.41	73.03		
1%	84.46	57.58	90.48	69.14	82.43	76.22		
2%	77.18	43.00	93.69	72.26	83.07	75.25		
3%	77.91	46.93	93.06	69.37	78.74	78.12		
5%	83.07	56.53	90.71	68.71	78.57	79.43		
10%	79.60	50.06	92.25	71.24	80.94	77.70		
20%	80.78	50.31	92.30	73.54	82.73	74.81		
50%	79.22	48.34	92.73	70.40	82.22	75.40		


Nonlinearity

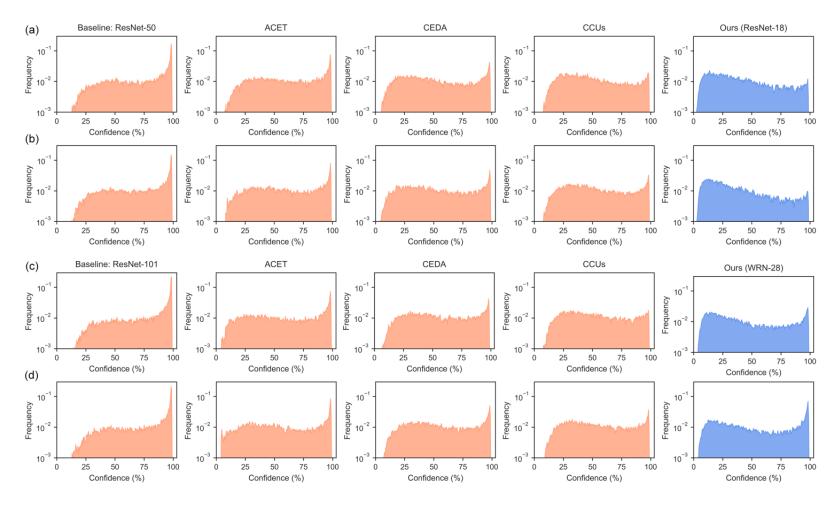
Analysis of Different Removal Locations



 $NRO = \frac{Number of negative convolutional responses}{Total number of convolutional responses}$

Impact of ReLU Removal Initiation Points

Illustration of Our Model Simplification Pipeline



Given a complex teacher model with high capacity and nonlinearity, we use knowledge distillation to transfer information to a low-capacity student model. During distillation, ReLU operations are selectively replaced with Leaky ReLU, and the negative slope is iteratively adjusted from 0 to 1, ultimately transforming ReLU into an identity function.

Results of Mitigating OOD Overconfidence

Model	Method		ID:	CIFAR-	-10		Average	ID: CIFAR-100					Average
Model	Wiction	SVHN	LSUN-R	iSUN	Textures	TINR	Average	SVHN	LSUN-R	iSUN	Textures	TINR	Average
	_	75.34	79.64	79.86	81.53	81.53	79.58	72.50	72.07	72.20	72.74	71.11	72.12
	CEDA	74.73	70.91	72.02	73.37	78.64	73.93	55.64	54.77	56.25	62.85	55.42	56.99
	ACET	74.29	67.35	67.72	70.37	69.87	69.92	63.68	62.49	62.19	64.44	61.15	62.79
t-50	CCUs	69.56	63.51	63.10	68.64	68.92	66.75	57.33	52.30	54.71	61.25	54.89	56.09
ResNet-50	Ours (ResNet-18)	78.24	73.29	74.37	79.51	76.98	76.48	54.75	43.65	42.27	61.40	<u>39.69</u>	48.35
Res	Ours (WRN-16)	63.65	66.32	68.49	77.09	70.18	69.15	<u>43.06</u>	51.76	51.99	<u>57.96</u>	52.37	51.43
	CEDA + Ours (WRN-16)	61.31	67.40	69.64	70.09	73.54	68.40	47.84	59.40	60.69	59.24	60.00	57.43
	ACET + Ours (WRN-16)	67.44	61.28	62.36	70.05	65.48	65.32	52.54	59.45	61.59	60.82	60.48	58.98
	CCUs + Ours (WRN-16)	65.97	58.81	61.32	64.84	65.96	63.38	50.88	49.04	51.85	58.40	51.82	52.40
	_	83.44	82.13	83.02	84.56	84.17	83.46	65.25	77.21	78.03	73.38	75.32	73.84
	CEDA	70.07	68.26	68.42	74.42	74.02	71.04	58.82	58.18	59.00	66.23	58.47	60.14
_	ACET	75.82	53.69	55.00	64.50	59.98	61.80	63.62	59.57	58.44	60.34	58.01	60.00
-10	CCUs	73.56	65.72	64.98	66.94	69.83	68.21	58.45	54.53	56.52	<u>59.80</u>	56.32	57.12
Net	Ours (ResNet-34)	75.22	74.81	75.94	82.08	78.86	77.38	63.62	58.42	60.13	66.69	59.89	61.75
ResNet-101	Ours (WRN-28)	71.21	74.73	76.03	81.80	77.89	76.33	55.69	47.84	51.20	63.69	<u>54.09</u>	54.50
	CEDA + Ours (WRN-28)	67.15	68.21	70.59	76.77	73.83	71.31	56.51	65.12	66.59	62.51	66.77	63.50
	ACET + Ours (WRN-28)	59.33	52.70	53.07	66.95	58.05	58.02	56.10	62.48	63.94	58.34	63.86	60.95
	CCUs + Ours (WRN-28)	67.79	61.74	64.20	65.95	68.80	65.70	53.71	50.96	53.58	57.86	54.52	54.13

Results of Mitigating OOD Overconfidence

Histograms (logarithmic scale) of MMC values for (a, b) ResNet-50 and (c, d) ResNet-101, w/ and w/o applying mitigation techniques: ACET, CEDA, CCUs, and Ours. All models are trained on CIFAR-100 and evaluated on OOD datasets: (a, c) LSUN-R and (b, d) TinyImageNet-R. In our approach, ResNet-18 and WRN-28 serve as students for ResNet-50 and ResNet-101, respectively.

Results of Enhancing OOD Detection

		OOD								- Average			
ID Model	Method	SV	/HN	LSU	JN-R	iS	UN	Tex	tures	T	INR	- Ave	erage
		FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑
	MSP	43.75	94.19	54.32	91.96	55.46	91.66	59.01	90.31	58.61	90.80	54.23	91.78
	MSP + Ours (ResNet-18)	51.82	93.27	41.93	93.89	44.86	93.27	55.64	90.57	50.18	91.97	48.89	92.59
	MSP + Ours (WRN-16)	28.18	<u>96.12</u>	<u>35.74</u>	<u>95.01</u>	<u>39.78</u>	94.34	57.00	89.79	42.35	<u>93.75</u>	40.61	<u>93.80</u>
	MaxLogit	22.07	96.31	32.03	94.95	34.95	94.53	46.33	91.39	44.96	92.57	36.07	93.95
	MaxLogit + Ours (ResNet-18)	30.25	94.94	25.06	95.34	27.91	94.73	44.50	<u>91.71</u>	36.75	92.73	32.89	93.89
	MaxLogit + Ours (WRN-16)	<u>17.61</u>	<u>96.96</u>	18.54	96.92	21.69	96.39	47.70	89.58	27.81	95.55	26.67	95.08
CIFAR-10 ResNet-50	Energy	20.35	96.40	29.79	95.11	32.80	94.67	45.41	91.44	43.76	92.64	34.42	94.05
AR SNe	Energy + Ours (ResNet-18)	28.53	95.07	23.99	95.43	26.55	94.83	44.13	89.70	35.92	92.79	31.82	93.56
Res CI	Energy + Ours (WRN-16)	18.80	<u>96.88</u>	18.07	<u>97.02</u>	20.91	96.50	47.89	89.54	27.63	<u>95.61</u>	26.66	<u>95.11</u>
	ReAct	37.66	91.10	16.24	96.64	19.65	95.84	46.72	86.29	30.79	93.46	30.21	92.67
	ReAct + Ours (ResNet-18)	31.59	94.62	23.87	95.51	26.78	94.86	43.60	90.19	35.87	92.92	32.34	93.62
	ReAct + Ours (WRN-16)	19.07	96.84	17.90	97.03	20.66	96.51	47.45	89.84	27.24	95.68	26.46	95.18
	FeatureNorm	9.25	97.97	77.34	82.07	70.29	83.96	48.97	84.16	67.71	84.49	54.71	86.53
	FeatureNorm + Ours (ResNet-18)	2.73	99.35	24.34	95.75	21.04	96.28	22.82	94.89	29.52	94.36	20.09	<u>96.13</u>
	FeatureNorm + Ours (WRN-16)	3.37	99.26	22.03	96.43	21.54	96.47	53.67	78.85	29.35	94.50	25.99	93.10
	MSP	76.30	81.14	86.67	69.76	88.11	69.06	85.69	73.73	85.27	71.47	84.41	73.03
	MSP + Ours (ResNet-34)	77.48	78.92	72.74	83.09	74.83	82.14	82.50	77.26	74.52	82.20	76.41	80.72
	MSP + Ours (WRN-28)	74.87	81.39	<u>62.57</u>	85.71	<u>66.94</u>	83.93	83.28	76.33	<u>69.44</u>	81.70	71.42	<u>81.81</u>
	MaxLogit	68.05	86.77	82.84	74.34	84.94	73.40	87.25	74.81	81.92	75.05	81.00	76.87
	MaxLogit + Ours (ResNet-34)	71.69	83.47	63.74	87.26	65.69	86.54	81.74	78.46	66.88	86.44	69.95	84.43
0 -	MaxLogit + Ours (WRN-28)	73.84	82.61	<u>54.30</u>	89.11	60.29	87.26	83.62	77.06	64.12	84.98	67.23	84.20
CIFAR-100 ResNet-101	Energy	68.38	86.94	82.38	74.64	84.21	73.67	88.03	74.62	81.40	75.25	80.88	77.02
AR	Energy + Ours (ResNet-34)	69.20	84.14	58.83	88.05	61.10	87.37	81.68	78.51	62.89	87.18	66.74	85.05
Ses]	Energy + Ours (WRN-28)	74.17	82.61	48.60	90.07	<u>55.05</u>	88.12	84.10	77.01	60.41	85.71	<u>64.47</u>	84.70
	ReAct	65.68	88.14	86.44	69.18	86.97	69.09	83.44	80.13	83.80	71.59	81.27	75.63
	ReAct + Ours (ResNet-34)	60.26	88.30	57.94	86.49	58.11	86.52	63.07	85.78	60.03	85.69	<u>59.88</u>	86.56
	ReAct + Ours (WRN-28)	71.89	86.73	47.34	89.20	53.66	87.46	80.57	81.48	58.97	84.66	62.49	85.91
	FeatureNorm	31.88	94.59	99.54	34.11	99.10	39.02	53.42	82.32	98.22	42.32	76.43	58.47
	FeatureNorm + Ours (ResNet-34)	41.47	90.47	92.46	71.49	91.41	72.89	65.18	80.33	89.99	69.00	76.10	76.84
	FeatureNorm + Ours (WRN-28)	54.17	89.08	80.86	79.52	80.69	79.91	71.49	74.37	78.00	80.74	73.04	80.72

Results of Enhancing OOD Detection

		OOD								Average	
Model	Method	SUN		Pl	aces	Textures		OpenImage-O		AVO	rage
		FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑
	MSP	65.76	82.24	69.53	81.14	67.82	79.36	64.92	84.47	67.01	81.80
	MSP + Ours (DenseNet-161)	66.31	81.72	68.61	81.32	66.97	79.55	62.12	85.10	66.00	81.92
_	MaxLogit	55.44	86.06	61.89	83.99	58.48	83.45	59.64	86.94	58.86	85.11
DenseNet-201	MaxLogit + Ours (DenseNet-161)	55.33	87.67	59.95	86.26	55.80	85.84	60.03	88.60	57.78	87.09
Vet	Energy	52.87	86.04	60.46	83.71	56.13	83.35	59.87	86.65	57.33	84.94
sel	Energy + Ours (DenseNet-161)	50.88	88.25	56.90	86.60	52.25	86.45	58.76	88.60	54.70	87.48
)en	ReAct	46.00	90.81	57.46	86.11	55.14	84.19	69.32	74.43	56.98	83.89
П	ReAct + Ours (DenseNet-161)	49.21	88.55	55.02	86.94	50.99	86.75	57.61	88.64	53.21	87.72
	FeatureNorm	43.06	90.05	55.71	85.42	50.46	79.90	79.97	67.22	57.30	80.65
	FeatureNorm + Ours (DenseNet-161)	36.52	91.79	49.24	87.50	56.73	78.29	82.20	65.49	56.17	80.77
	MSP	66.93	82.44	70.48	81.35	65.14	80.91	59.87	86.13	65.61	82.71
	MSP + Ours (WRN-50)	67.75	82.80	69.07	81.81	66.38	80.96	60.91	86.78	66.03	83.09
	MaxLogit	63.25	84.75	68.40	82.69	57.39	84.38	55.84	88.43	61.22	85.06
01	MaxLogit + Ours (WRN-50)	61.92	86.18	64.34	84.40	56.74	85.60	55.69	89.25	59.67	86.36
1-1	Energy	65.06	84.46	70.32	82.27	57.11	84.37	58.04	88.02	62.63	84.78
WRN-101	Energy + Ours (WRN-50)	63.18	85.96	66.06	84.00	55.90	85.68	57.87	88.77	60.75	86.10
>	ReAct	52.22	88.11	58.76	85.47	57.09	84.99	49.63	87.82	54.43	86.60
	ReAct + Ours (WRN-50)	37.02	92.24	48.54	88.70	50.90	87.36	54.49	85.92	47.74	88.56
	FeatureNorm	70.07	78.89	78.61	73.23	20.98	94.79	75.09	74.81	61.19	80.43
	FeatureNorm + Ours (WRN-50)	60.22	83.67	74.01	75.96	17.71	96.09	69.94	78.90	55.47	83.66

Importance of Knowledge Distillation and ReLU Removal

Table 6. Comparison of MMC and OOD detection performance for ResNet-50 enhanced by Ours (ResNet-18) and its variants w/o knowledge distillation (KD) and ReLU removal (RR), using CIFAR-10 as the ID dataset, and SVHN, LSUN-R, iSUN, Textures, and TINR as the OOD datasets. Results are averaged.

KD	RR	MMC↓	FPR95↓	AUROC↑
		79.58	54.23	91.78
\checkmark		76.81	49.81	92.42
	\checkmark	78.46	50.50	91.76
✓	✓	76.48	48.89	92.59

Knowledge Distillation vs. Network Pruning for Capacity Reduction

Table 7. Comparison of MMC and OOD detection performance for ResNet-50 and ResNet-101 reduced to comparable parameter counts via KD [22] and Prune [14]. CIFAR-10 serves as the ID dataset, with SVHN, LSUN-R, iSUN, Textures, and TINR as OOD datasets. Results are averaged across all five OOD datasets

Model	Capacity Reduction	MMC↓	FPR95↓	AUROC↑
	_	79.58	54.23	91.78
ResNet-50	Prune	77.34	52.55	92.27
	KD (ResNet-18)	76.81	49.81	92.42
	_	83.46	51.92	92.53
ResNet-101	Prune	78.20	50.92	91.61
	KD (WRN-28)	77.01	41.09	92.56

Thanks!