

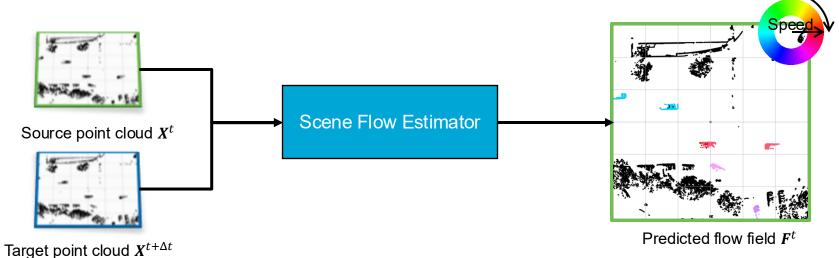
VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow

Yancong Lin *,†,*, Shiming Wang *,*, Liangliang Nan *, Julian Kooij * and Holger Caesar *

*TU Delft † ETH Zurich * Equal Contribution

Introduction: Scene Flow

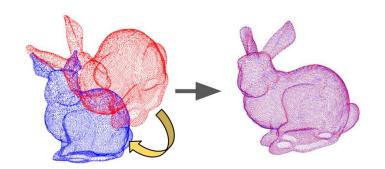
- **Input:** two consecutive LiDAR scans X^t and $X^{t+\Delta t}$
- Output: a point-wise 3D motion field from t to $t + \Delta t F^t$
- Application:
 - Unsupervised object discovery^[1]
 - Dynamic object motion compensation^[2]



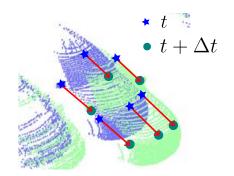
Direction

Introduction: Rigid Motion

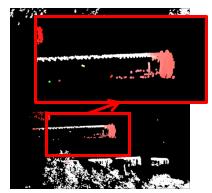
- Scene flow estimation methods commonly adopt the Rigid Motion assumption.
- Rigid Motion indicates that nearby points on rigid objects share the same motion
- SoTA methods enforces this assumption via:
 - Extra loss function or regularizer [1,2]
 - Post-processing [3]
- ⇒ However, none of them encode motion rigidity by design



Motion in a rigid object



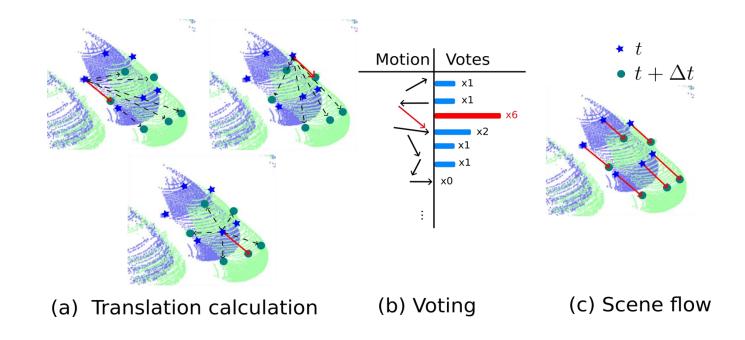
Rigid motion in scene flow



Lack of motion rigidity in model design results in inconsistent flow

Introduction: Our Idea

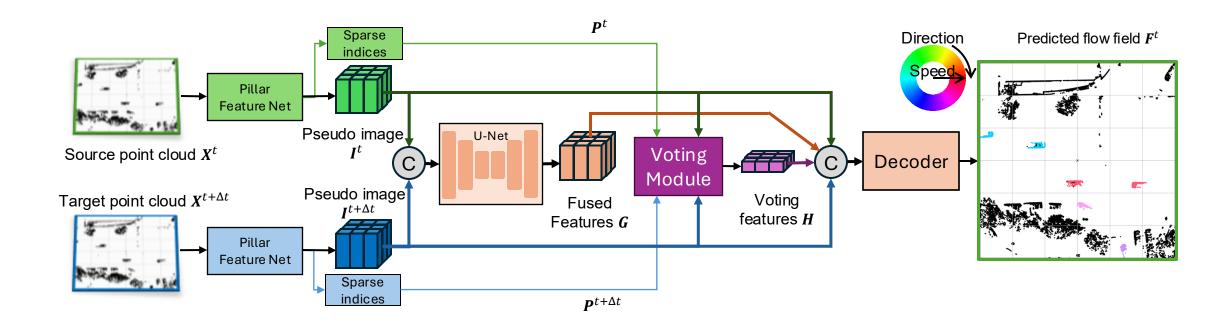
Our idea: Use voting to identify shared rigid motion



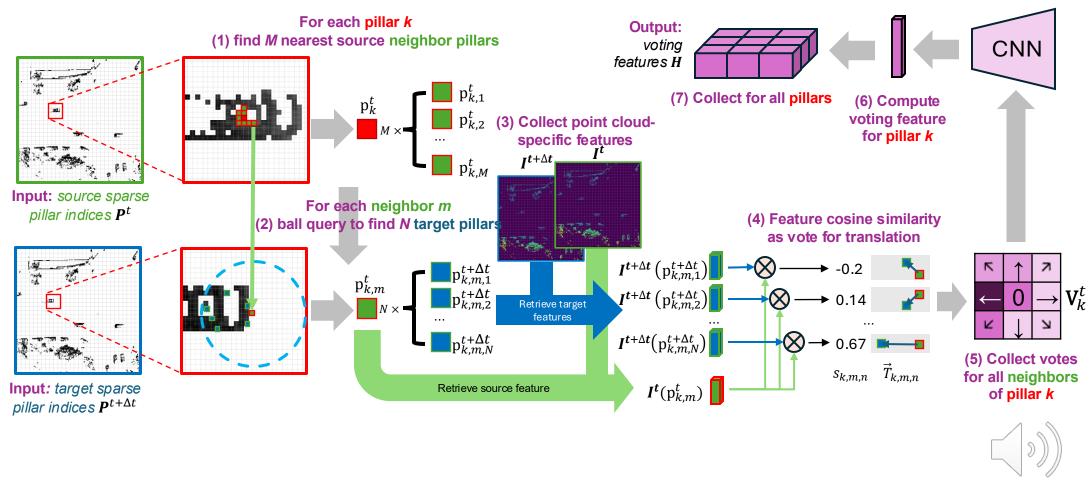
Introduction: Main Contributions

- Motion rigidity
 - Local rigid motion as an inductive bias in the self-supervised model
- Plug & Play design
 - Core component: a differentiable, light-weight and add-on Voting Module
- Leading results, better generalization, and fast inference
 - In-domain evaluation: outperforms on the Argoverse 2 dataset
 - Cross-domain evaluation: excels on the Waymo Open dataset
 - Inference latency: 40FPS (real-time)

Methodology: VoteFlow



Methodology: Voting Module



Experiments: Main Results

	Labels	Argoverse2 test				Waymo val (in-domain)		Waymo val (cross-domain)				
Method		Dynamic ↓ (normalized EPE)				EPE ↓ (in meters)			EPE ↓ (in meters)			
		Mean	Car	O.V.	Pd	W.V.	FD	FS	BS	FD	FS	BS
Flow4D [1]	✓	0.174	0.096	0.167	0.278	0.155	-	-	-	-	-	-
NSFP [2]	X	0.422	0.251	0.331	0.723	0.383	0.171	0.108	0.022	-	-	-
SeFlow [3]	X	0.309	0.214	0.292	0.463	0.267	0.151	0.018	0.011	0.155	0.018	0.013
VoteFlow	×	0.289	0.202	0.288	0.417	0.249	0.117	0.015	0.016	0.142	0.014	0.012

Flow4D is the state-of-the-art supervised method, showing the upper bound here

[•] In-domain: trained and valuated with Waymo, Cross-domain: trained on Argoverse 2 but tested on Waymo

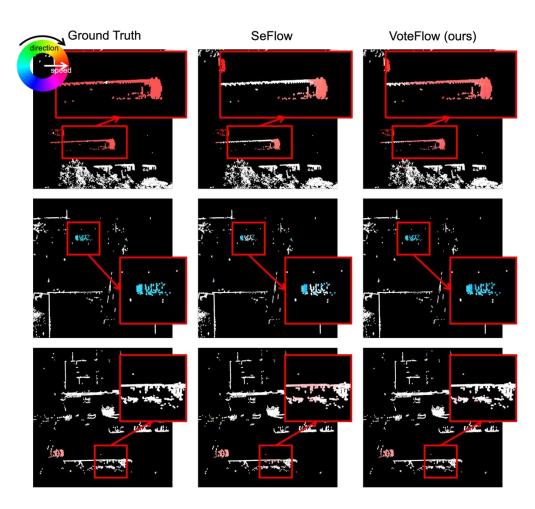
[•] O.V.: Other Vehicles, Pd: Pedestrians, W.V.: Wheeled VRUs

[•] FD: foreground dynamic, FS: foreground static, BS: background static

Experiments: Plug & Play design

		Argoverse2 val							
Method	Labels	Dynamic ↓ (normalized EPE)							
		Mean	Car	O.V.	Pd	W.V.			
FastFlow3D[1]	✓	0.487	0.268	0.351	0.812	0.517			
FastFlow3D+Voting	✓	0.389	0.164	0.292	0.674	0.429			
SeFlow [2]	X	0.371	0.221	0.385	0.527	0.352			
SeFlow+Voting	X	0.354	0.221	0.374	0.475	0.344			

Experiments: Qualitative Results

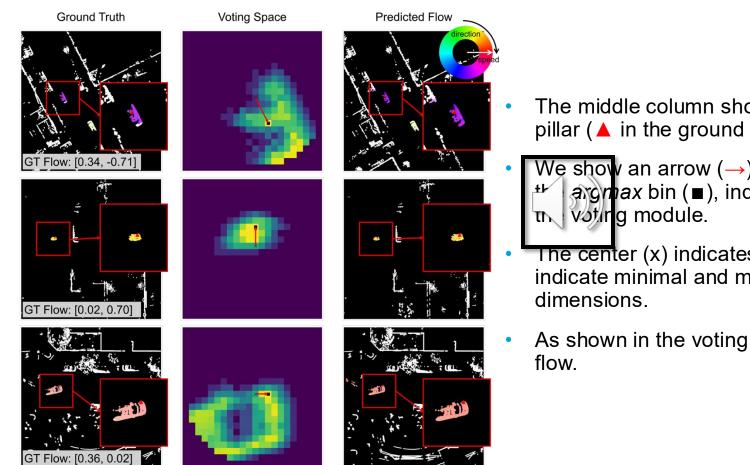


 VoteFlow generates more consistent predictions over the entire bus.

VoteFlow achieves more uniform coloring overall, indicating the local motion rigidity was well captured.

 VoteFlow predicts less false positives and remains largely consistent with the ground truth.

Experiments: The Voting Space



- The middle column shows the voting space for an anchor pillar (▲ in the ground truth plot).
- We show an arrow (\rightarrow) that points from the plot center (x) to an arrow (\blacksquare) , indicating the translation vector voted by voting module.
- The center (x) indicates zero translations and boundaries indicate minimal and maximal translations along both dimensions.
- As shown in the voting space, → aligns with the ground truth flow

Conclusions

Main takeaways:

- Motion rigidity, as an inductive bias, is crucial for scene flow estimation.
- Our differential Voting Module Integrates motion rigidity into network design improving the performance and generalizability of the model.

Limitations:

• When Δt increases, the maximum possible translation grows, expanding the voting space and increasing the computational burden.

• Future work:

- Long-horizon flow prediction
- Multi-modal scene flow

Thank you for watching!

Arxiv

Code

IV Group

11-6-2025

Thank you for watching.

Yancong Lin

Shiming Wang

Liangliang Nan

Julian Kooij

Holger Caesar

