

Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption

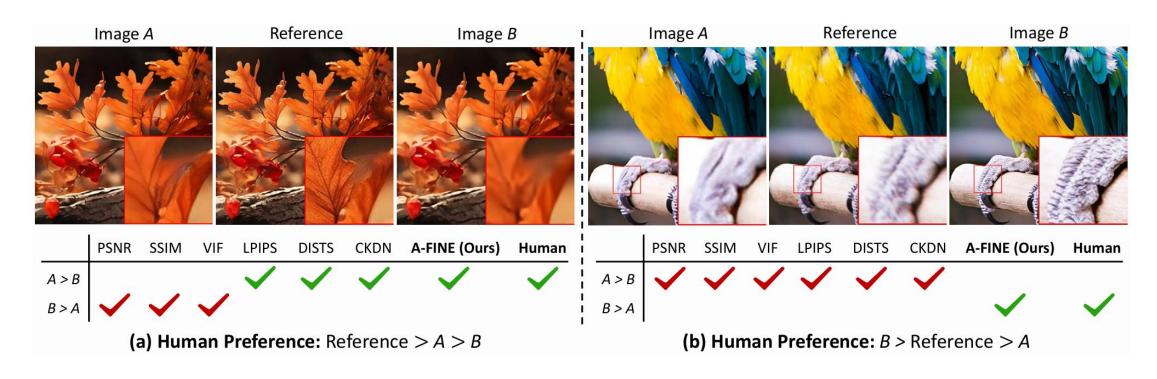
Du Chen^{1,3*}, Tianhe Wu^{2,3*}, Kede Ma², and Lei Zhang^{1,3}

¹Department of Computing, The Hong Kong Polytechnic University

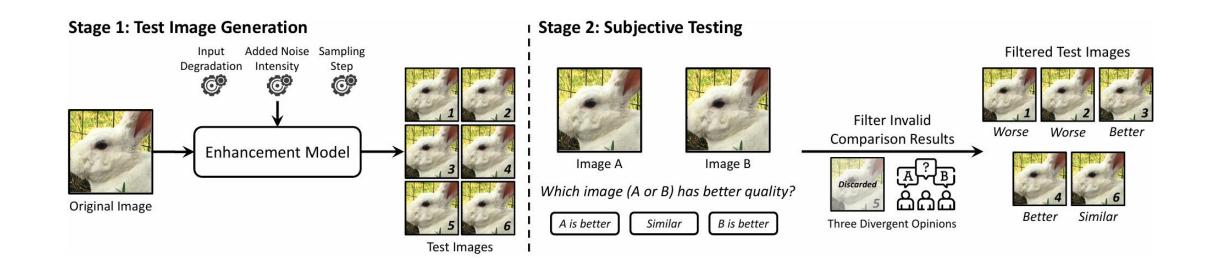
²Department of Computer Science, City University of Hong Kong

³OPPO Research Institute

https://tianhewu.github.io/A-FINE-page.github.io/



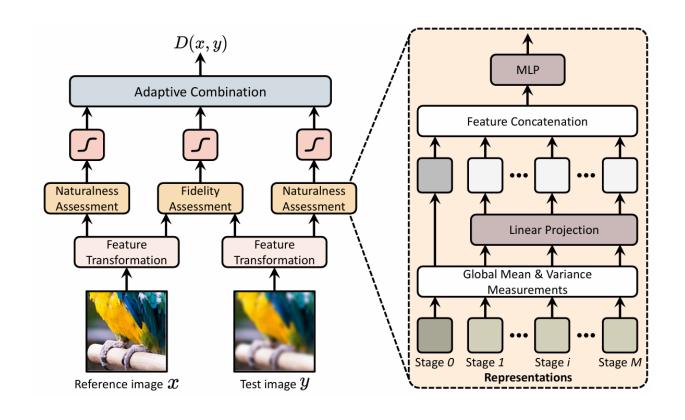
Motivation


- Full-reference image quality assessment hypothesis
 - Reference images are of the highest quality
 - Perceptual distance as the quality score for the test image
- Existing generative SR or restoration models can generate images with higher quality than the reference

DiffIQA Database

- Training: Image enhancement network based on diffusion model
- Enhanced 179,208 images
- 76,515 worse, 24,654 similar, 76,150 better (compared to reference) image pairs

SRIQA-Bench



- Regression-based SR networks
 - SwinIR and RRDB
- Generation-based SR networks
 - Real-ESRGAN, BSR GAN, HGGT, SUPIR, SeeSR, StableSR, SinSR and OSEDiff

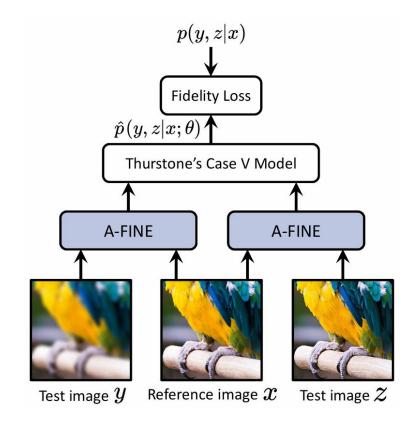
Dataset	# of	# of	Distortion /	Image	# of Human	Perfect Reference
Dataset	Ref. Images	Test Images	Enhancement Type	Resolution	Annotations	Quality Assumption
LIVE [30]	29	779	Simulated	$480 \times 720 \text{ to } 768 \times 512$	25k	Necessary
CSIQ [15]	30	866	Simulated	512×512	25k	Necessary
TID2013 [26]	25	3k	Simulated	512×384	500k	Necessary
KADID-10K [20]	81	10.1k	Simulated	512×384	303.8k	Necessary
PIPAL [10]	250	29k	Simulated / GAN-based	$288{ imes}288$	1.1m	Necessary
BAPPS [56]	187.7k	375.4k	Simulated / DNN-based	64×64	484.3k	Necessary
DiffIQA (Ours)	29.9k	177.3k	Diffusion-based	512×512	537.6k	Not Necessary
SRIQA-Bench (Ours)	100	1.1k	DNN- / GAN- / Diffusion-based	512×512	55k	Not Necessary

Computation of A-FINE

Combine fidelity and naturalness

$$D(x,y) = F(x,y) + \lambda(x,y)N(y)$$

$$\lambda(x,y) = \exp\left(k(N(x) - N(y))\right)$$


Texture and structure similarity

$$L(x_j^{(i)}, y_j^{(i)}) = \frac{2\mu_{x_j}^{(i)}\mu_{y_j}^{(i)} + c_1}{\left(\mu_{x_j}^{(i)}\right)^2 + \left(\mu_{y_j}^{(i)}\right)^2 + c_1}$$

$$S(x_j^{(i)}, y_j^{(i)}) = \frac{2\sigma_{x_j y_j}^{(i)} + c_2}{\left(\sigma_{x_j}^{(i)}\right)^2 + \left(\sigma_{y_j}^{(i)}\right)^2 + c_2}$$

Training Procedure of A-FINE

Learning-to-rank

$$p(y, z|x) = \begin{cases} 1 & \text{if } Q(y|x) > Q(z|x) \\ 0.5 & \text{if } Q(y|x) = Q(z|x) \\ 0 & \text{otherwise,} \end{cases}$$

$$\hat{p}(y, z | x; \theta) = \Phi\left(\frac{D(x, y; \theta) - D(x, z; \theta)}{\sqrt{2}}\right)$$

$$\ell(y, z | x; \theta) = 1 - \sqrt{p(y, z | x) \hat{p}(y, z | x; \theta)} - \sqrt{(1 - p(y, z | x))(1 - \hat{p}(y, z | x; \theta))}.$$

Main Results

Scenario	Method	Training Dataset	TID2013	KADID	PIPAL	Average	Ref < Test	DiffIQA Ref > Test	Average	All Average
	PSNR	N.A.	75.8	74.9	70.7	72.2	18.2	92.1	45.6	58.9
	SSIM [43]	N.A.	68.9	74.0	72.1	72.4	20.1	93.0	47.1	60.0
	MS-SSIM [42]	N.A.	83.4	81.8	72.5	75.9	20.1	93.0	47.1	61.5
	FSIM [53]	N.A.	86.0	83.4	76.2	79.0	20.2	93.1	47.2	63.1
	VSI [54]	N.A.	87.3	84.8	76.2	79.5	19.7	93.1	46.9	63.2
	LPIPS [56]	BAPPS	78.7	77.0	74.3	75.4	23.7	94.7	50.0	62.7
Standard	LPIPS-FT	Combined	72.5	78.2	71.7	73.6	35.4	91.6	55.6	64.6
	DISTS [5]	KADID	78.4	81.4	75.3	77.2	21.4	<u>94.8</u>	48.6	62.9
	DISTS-FT	Combined	78.4	81.9	72.1	75.3	38.2	89.5	56.7	66.0
	AHIQ [14]	PIPAL	74.6	76.4	79.3	78.1	34.1	88.1	54.1	66.1
_	AHIQ-FT	Combined	81.0	79.7	74.9	76.7	78.4	73.8	76.7	76.7
	TOPIQ [1]	KADID	90.4	94.3	<u>80.5</u>	85.1	22.1	95.1	49.1	67.1
	TOPIQ-FT	Combined	78.9	85.0	79.0	80.6	<u>78.6</u>	74.2	<u>77.0</u>	<u>78.8</u>
	VIF [29]	N.A.	78.5	75.2	72.4	73.7	20.0	92.8	46.9	60.3
Generalized	PCQI [35]	N.A.	66.6	65.4	56.7	59.9	17.3	90.3	44.3	52.1
	SFSN [61]	N.A.	75.6	70.5	69.8	70.5	19.5	89.6	45.4	58.0
	CKDN [60]	PIPAL	76.9	70.9	79.8	77.1	33.3	82.4	51.4	64.3
	CKDN-FT	Combined	75.0	80.1	68.1	72.0	79.4	71.0	76.4	74.2
	A-FINE (Ours)	Combined	88.1	88.3	81.0	83.6	78.5	82.3	79.9	81.8

• There is a balance between two assessment scenarios

Other Results

SRIQA-Bench

Method	Regression-based	Generation-based	All
PSNR	80.7	41.7	34.7
SSIM [43]	83.0	45.3	37.4
MS-SSIM [42]	83.0	45.6	37.6
FSIM [53]	<u>85.3</u>	49.5	41.0
VSI [54]	81.3	50.1	41.2
LPIPS [56]	82.0	63.9	65.8
LPIPS-FT	84.7	63.8	72.2
DISTS [5]	83.3	66.6	72.4
DISTS-FT	86.0	63.9	71.4
AHIQ [14]	83.7	70.0	68.4
AHIQ-FT	71.0	71.5	69.6
TOPIQ [1]	83.7	63.9	67.0
TOPIQ-FT	78.3	<u>73.0</u>	<u>77.7</u>
VIF [29]	<u>85.3</u>	47.1	38.9
PCQI [35]	79.0	39.8	32.2
SFSN [61]	80.3	48.4	39.8
CKDN [60]	45.0	60.1	47.4
CKDN-FT	76.7	64.3	59.1
A-FINE (Ours)	83.3	78.9	82.4

Backbone

Backbone	Ctondord	DiffIOA	SRIQA-Bench			
Баскропе	Standard	DIIIQA	Reg.	Gen.	All	
TOPIQ-FT	80.6	77.0	78.3	73.0	77.7	
VGG16	77.6	77.0	79.0	75.0	79.8	
ResNet50 (ImageNet)	74.8	69.6	<u>84.7</u>	70.7	77.2	
ResNet50 (CLIP)	76.1	71.1	85.2	70.3	75.6	
ViT-B/32 (ImageNet)	81.0	<u>77.7</u>	81.3	<u>75.5</u>	80.4	
ViT-B/32 (CLIP)	83.6	79.9	83.3	78.9	82.4	

Training Data

Training	Standard	DiffIOA	SRIQA-Bench			
Dataset	Standard	DilliQA	Reg.	Gen.	All	
Standard	84.1	65.6	86.7	71.8	78.7	
DiffIQA	70.6	79.6	78.3	72.9	76.0	
Combined	83.6	79.9	83.3	78.9	82.4	

Training Strategy

Training	Standard	DiffIOA	SRIQA-Bench			
Strategy	Standard	DilliQA	Reg.	Gen.	All	
Single-Phase	79.7	79.6	79.3	75.1	77.9	
Three-Phase	83.6	79.9	83.3	78.9	82.4	

Thanks

Tianhe Wu

2025.5.24

wth22@mails.tsinghua.edu.cn

