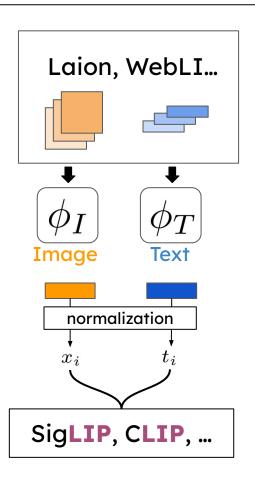
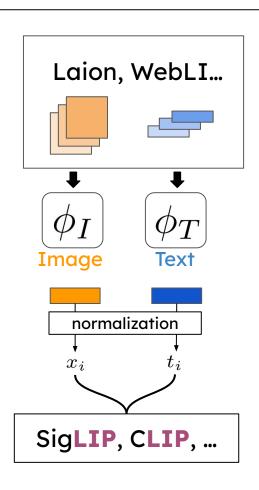


Context-Aware Multimodal Pretraining **CVPR 2025**

Karsten Roth

Zeynep Akata





Dima Damen Ivana Balažević Olivier J. Hénaff

Contrastive Multimodal Pretraining: The vision-encoder workhorse

Contrastive Multimodal Pretraining: The vision-encoder workhorse

SigLIP - Sigmoid-based

$$-\frac{1}{|\mathcal{B}|} \sum_{i,j=1}^{|\mathcal{B}|} \log \frac{1}{1 + e^{\mathbb{I}_{i=j}(-\tau_1 x_i t_j + b_1)}}$$

CLIP - Softmax-based

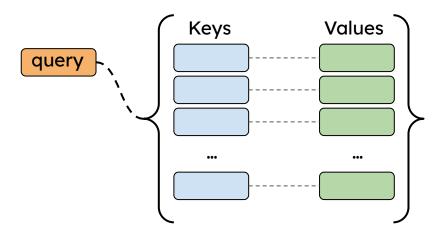
$$\frac{1}{2|\mathcal{B}|} \sum_{i=1}^{\mathcal{B}} \left(\log \frac{e^{\tau_1 x_i t_i}}{\sum_{j=1}^{|\mathcal{B}|} e^{\tau_1 x_i t_h}} + \log \frac{e^{\tau_1 x_i t_i}}{\sum_{j=1}^{|\mathcal{B}|} e^{\tau_1 x_j t_i}} \right)$$

Training in this manner: **High** zero-shot generality, e.g. for open-vocabulary classification, retrieval, ...

Going beyond zero-shot generalization?

Modern objectives: Take representations, and re-use them further down the line. E.g. for retrieval augmentation, memory-augmented models, vision-context in multimodal LLMs...

Can you pretrain for such general purpose re-use?


Going beyond zero-shot generalization?

Modern objectives: Take representations, and re-use them further down the line. E.g. for retrieval augmentation, memory-augmented models, vision-context in multimodal LLMs...

Can you pretrain for such general purpose re-use?

Key perspective:

Representation re-use (e.g. few-shot, many-shot, MLLMs) often involve (soft) dictionary lookup.

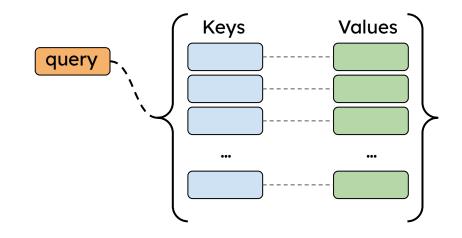
Going beyond zero-shot generalization?

Modern objectives: Take representations, and re-use them further down the line. E.g. for retrieval augmentation, memory-augmented models, vision-context in multimodal LLMs...

Can you pretrain for such general purpose re-use?

Key perspective:

Representation re-use (e.g. few-shot, many-shot, MLLMs) often involve (soft) dictionary lookup.



Pretrain vision encoder at scale to:

- maintain zero-shot generality
- be better for dictionary lookup style re-use

Important:

Avoid trade-off!

We introduce Language-Image **Context** Pretraining (LI**x**P)

Step 1: Take standard objective:

$$\mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) = -\frac{1}{|\mathcal{B}|} \sum_{i,j=1}^{|\mathcal{B}|} \log \frac{1}{1 + e^{\mathbb{I}_{i=j}(-\tau_1 x_i t_j + b_1)}}$$

We introduce Language-Image **Context** Pretraining (LI**x**P)

$$\mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) = -\frac{1}{|\mathcal{B}|} \sum_{i,j=1}^{|\mathcal{B}|} \log \frac{1}{1 + e^{\mathbb{I}_{i=j}(-\tau_1 x_i t_j + b_1)}}$$

Significant trial & error later...

Step 2: Introduce a contextualization surrogate objective:
$$\mathcal{L}_{\text{LIxP}} = \alpha \mathcal{L}_{\text{LIP}}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{\text{LIP}}(\mathbf{X}_{\mathcal{B}}^{\text{ctx}}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Same loss function

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Mimic (soft) dictionary lookup with attention:

$$x_i^{\text{ctx}} = \sigma \left(\frac{x_i \cdot \mathcal{M}_K^T}{\tau_{\text{ctx}} \sqrt{d}} \right) \mathcal{M}_V \qquad \text{``Contextualized representation''} \\ \text{by looking at memory}$$

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Mimic (soft) dictionary lookup with attention:

$$x_i^{\text{ctx}} = \sigma \left(\frac{x_i \cdot \mathcal{M}_K^T}{\tau_{\text{ctx}} \sqrt{d}} \right) \mathcal{M}_V$$

What to use as keys and values?
Visual representation, textual, stale, EMA, augmented?

How to efficiently maintain and shard it correctly at scale? Maintain separate model or large memories can be costly.

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Occam's Razor: Simple is best (if done right)

$$\hat{\mathbf{X}}_{\mathcal{B}}^{\text{ctx}} = \sigma \left(\frac{\mathbf{X}_{i} \cdot \mathcal{M}_{K}^{T}}{\tau_{\text{ctx}} \sqrt{d}} \right) \mathcal{M}_{V}$$

$$\hat{\mathbf{X}}_{\mathcal{B}}^{\text{ctx}} = \sigma \left(\frac{\mathbf{M} \odot \mathbf{X}_{\mathcal{B}} \mathbf{X}_{\mathcal{B}}^{T}}{\tau_{\text{ctx}} \sqrt{d}} \right) \hat{\mathbf{X}}_{\mathcal{B}}$$

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Occam's Razor: Simple is best (if done right)

 $\hat{\mathbf{X}}_{\mathcal{B}}^{\text{ctx}} = \sigma \left(\frac{\mathbf{M} \odot \mathbf{X}_{\mathcal{B}} \mathbf{X}_{\mathcal{B}}^{T}}{\tau \cdot \sqrt{d}} \right)$

 $x_i^{\text{ctx}} = \sigma \left(\frac{x_i \cdot \mathcal{M}_K^1}{\tau_{\text{ctx}} \sqrt{d}} \right) \mathcal{M}_V$ Use same batch as key & values, **but**:

Mask out self-attention shortcut

Step 2: Introduce a contextualization surrogate objective:

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \tau_1) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \tau_2)$$

Occam's Razor: Simple is best (if done right)

$$\hat{\mathbf{X}}_{\mathcal{B}}^{\text{ctx}} = \sigma \left(\frac{\mathbf{X}_{i} \cdot \mathcal{M}_{K}^{T}}{\tau_{\text{ctx}} \sqrt{d}} \right) \mathcal{M}_{V}$$

$$\hat{\mathbf{X}}_{\mathcal{B}}^{\text{ctx}} = \sigma \left(\frac{\mathbf{M} \odot \mathbf{X}_{\mathcal{B}} \mathbf{X}_{\mathcal{B}}^{T}}{\tau_{\text{ctx}} \sqrt{d}} \right) \hat{\mathbf{X}}_{\mathcal{B}}$$

Use same batch as key & values*

Super scalable extension!

Making it work: A challenge of engineering and patience

Three distinctly learnable, exponential temperatures

Re-usability is **emergent** sufficiently long training is needed.

Large enough pretraining batchsizes.

$$\mathcal{L}_{LIxP} = \alpha \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}, \mathbf{T}_{\mathcal{B}}, \underline{\tau_1}) + (1 - \alpha) \mathcal{L}_{LIP}(\mathbf{X}_{\mathcal{B}}^{ctx}, \mathbf{T}_{\mathcal{B}}, \underline{\tau_2})$$

$$\hat{\mathbf{X}}_{\mathcal{B}}^{ctx} = \sigma \left(\frac{\mathbf{M} \odot \mathbf{X}_{\mathcal{B}} \mathbf{X}_{\mathcal{B}}^T}{\underline{\tau_{ctx}} \sqrt{d}} \right) \hat{\mathbf{X}}_{\mathcal{B}}$$

Making it work: A challenge of engineering and patience

Three distinctly learnable, exponential temperatures

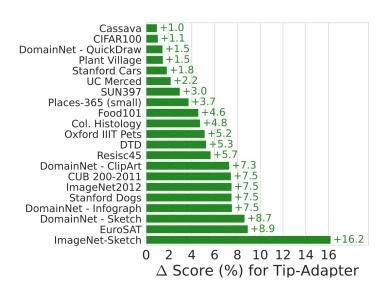
Re-usability is **emergent** sufficiently long training is needed.

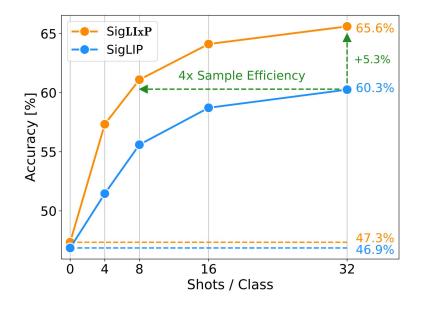
Large enough pretraining batchsizes.

Making it work: A challenge of engineering and patience

Three distinctly learnable, exponential temperatures

Re-usability is **emergent** - sufficiently long training is needed.

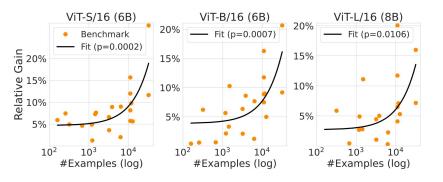

Large enough pretraining batchsizes.


Method	Zero-Shot	16-Shot	Method	Zero	-Shot	16-Shot		Method		Zero-Sho	t 16-Sho
SigLIP	51.0	60.1 ± 0.4	None	50).5	$64.1 \pm 0.$.5	SigLIE	?	51.0	60.1 ± 0
SigLIxP	50.5	64.1 ± 0.5	linear	50).2	$62.8 \pm 0.$	2	SigLI	¢Ρ	50.5	64.1 ± 0
Separate Batch	48.8	63.2 ± 0.3	2-layer l	MLP 49	9.8	$61.1 \pm 0.$	2	No Nori	nalization	1 48.9	61.7 ± 0
			3-layer l	MLP 49	9.1	$60.8 \pm 0.$	3				
(a) Context Batch Separation				(b) Value Heads for \mathcal{M}_V				(c) QK Normalization			
Method	Zero-Shot	16-Shot	Method	Zero	o-Shot	16-Shot		Method	1 2	Zero-Shot	16-Sho
None	50.5	64.1 ± 0.5	None	5.	0.5	$64.1 \pm 0.$	5	Full (32	2k)	50.5	64.1 ± 0
LayerNorm {K}	46.8	57.1 ± 0.3			5.9	$59.7 \pm 0.$	3	Subset		50.7	59.9 ± 0
LayerNorm $\{V\}$	48.5	62.3 ± 0.5		,	6.9	$60.5 \pm 0.$		Subset	'	50.5	62.9 ± 0
LayerNorm $\{K, V\}$	} 48.3	58.2 ± 0.3		,	7.2	$60.7 \pm 0.$		Subset	'	50.3	63.9 ± 0
(d) Layer Normalization on M			(e)	(e) Inclusion of Stale Buffer				(f) Reduced Active Buffer Size			
Mathod Zaro Shot 16 Shot Me				Method Zero-Shot 16-Shot Me				ethod Zero-Shot 16-Shot			
Method Z	ero-Shot	16-Shot	Method	Zero-Shot	16-	Shot	Metl	nod	Zero-Sl	not 16-S	hot
		16-Shot									
SigLIP	51.0 6	60.1 ± 0.4	$\alpha = 0.95$	50.8	62.5	± 0.3	Sing	le-Stage	50.5	64.1 ∃	± 0.5
SigLIP Sig LIxP	51.0 6 50.5 6	60.1 ± 0.4 64.1 ± 0.5	$\alpha = 0.95$ $\alpha = 0.9$	50.8 50.5	62.5 64.1	$\pm 0.3 \\ \pm 0.5$	Sing	le-Stage dual	50.5 49.2	64.1 ± 59.2 ±	± 0.5 ± 0.4
SigLIP	51.0 6 50.5 6	60.1 ± 0.4	$\alpha = 0.95$ $\alpha = 0.9$ $\alpha = 0.8$	50.8 50.5 50.0	62.5 64.1 63.8	± 0.3 ± 0.5 ± 0.3	Sing Resi Mult	le-Stage dual timodal	50.5 49.2 47.9	64.1 ± 59.2 ± 61.4 ±	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking	51.0 6 50.5 6 50.9 6	60.1 ± 0.4 64.1 ± 0.5 60.5 ± 0.4	$\alpha = 0.95$ $\alpha = 0.9$ $\alpha = 0.8$ $\alpha = 0.6$	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5	$\pm 0.3 \\ \pm 0.5$	Sing Resi Mult	le-Stage dual timodal -Stage	50.5 49.2 47.9 50.5	64.1 ± 59.2 ± 61.4 ± 62.0 ±	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking	51.0 6 50.5 6	60.1 ± 0.4 64.1 ± 0.5 60.5 ± 0.4	$\alpha = 0.95$ $\alpha = 0.9$ $\alpha = 0.8$ $\alpha = 0.6$	50.8 50.5 50.0	62.5 64.1 63.8 61.5	± 0.3 ± 0.5 ± 0.3	Sing Resi Mult	le-Stage dual timodal -Stage	50.5 49.2 47.9 50.5	64.1 ± 59.2 ± 61.4 ±	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking	51.0 6 50.5 6 50.9 6 tention Mask	60.1 ± 0.4 64.1 ± 0.5 60.5 ± 0.4	$\alpha = 0.95$ $\alpha = 0.9$ $\alpha = 0.8$ $\alpha = 0.6$	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5 hting	± 0.3 ± 0.5 ± 0.3	Sing Resi Mult	le-Stage dual timodal -Stage (c) Cont	50.5 49.2 47.9 50.5	64.1 ± 59.2 ± 61.4 ± 62.0 ±	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking (a) Self-Att	51.0 6 50.5 6 50.9 6 tention Mask	60.1 ± 0.4 64.1 ± 0.5 60.5 ± 0.4 ing Zero-Shot	$\alpha = 0.95$ $\alpha = 0.9$ $\alpha = 0.8$ $\alpha = 0.6$ (b) $16-Shot$ 64.1 ± 0.5	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5 hting	± 0.3 ± 0.5 ± 0.3 ± 0.4 ethod	Sing Resi Muli Two	le-Stage dual timodal -Stage (c) Cont	50.5 49.2 47.9 50.5 textualiza	$64.1 \pm 59.2 \pm 61.4 \pm 62.0 \pm 61.4 \pm 0.5$	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking (a) Self-Att	51.0 6 50.5 6 50.9 6 tention Mask	60.1 ± 0.4 64.1 ± 0.5 60.5 ± 0.4 60.5 ± 0.4 Moreo-Shot 60.5 ± 0.4	$\begin{array}{c} \alpha = 0.95 \\ \alpha = 0.9 \\ \alpha = 0.9 \\ \alpha = 0.8 \\ \alpha = 0.6 \\ \text{(b)} \\ \hline 16\text{-Shot} \\ 64.1 \pm 0.5 \\ 61.8 \pm 0.4 \\ \end{array}$	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5 hting	± 0.3 ± 0.5 ± 0.3 ± 0.4 ethod all back-propop Gradient	Sing Resi Muli Two	le-Stage dual timodal -Stage (c) Cont	50.5 49.2 47.9 50.5 textualization-Shot 50.5 19.6	64.1 \pm 59.2 \pm 61.4 \pm 62.0 \pm ation Type 16-Shot 64.1 \pm 0.5 62.7 \pm 0.4	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking (a) Self-Att Method	51.0 6 50.5 6 50.9 6 tention Masking 2	$\begin{array}{c} 60.1 \pm 0.4 \\ 44.1 \pm 0.5 \\ 0.5 \pm 0.4 \\ \\ \hline \\ \text{Cero-Shot} \\ \hline \\ 50.5 \\ \hline \\ 47.8 \\ \hline \\ 50.4 \\ \end{array}$	$\begin{array}{c} \alpha = 0.95 \\ \alpha = 0.9 \\ \alpha = 0.9 \\ \alpha = 0.8 \\ \alpha = 0.6 \\ \text{(b)} \\ \hline 16\text{-Shot} \\ \hline 54.1 \pm 0.5 \\ 51.8 \pm 0.4 \\ 60.2 \pm 0.6 \\ \end{array}$	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5 hting	± 0.3 ± 0.5 ± 0.3 ± 0.4 ethod all back-propop Gradient op Gradient	Sing Resi Mult Two	le-Stage dual timodal -Stage (c) Cont Zer	50.5 49.2 47.9 50.5 textualiza o-Shot 60.5 19.6 13.8	$64.1 \pm 59.2 \pm 61.4 \pm 62.0 \pm 61.4 \pm 62.0 \pm 62.0 \pm 62.0 \pm 64.1 \pm 0.5 \pm 62.7 \pm 0.4 \pm 68.7 \pm 0.2$	= 0.5 = 0.4 = 0.4
SigLIP SigLIxP No masking (a) Self-Att Method	51.0 6 50.5 6 50.9 6 tention Masking 2	$\begin{array}{c} 60.1 \pm 0.4 \\ 44.1 \pm 0.5 \\ 0.5 \pm 0.4 \\ \\ \hline \\ \text{Cero-Shot} \\ \hline \\ 50.5 \\ \hline \\ 47.8 \\ \hline \\ 50.4 \\ \end{array}$	$\begin{array}{c} \alpha = 0.95 \\ \alpha = 0.9 \\ \alpha = 0.9 \\ \alpha = 0.8 \\ \alpha = 0.6 \\ \text{(b)} \\ \hline 16\text{-Shot} \\ 64.1 \pm 0.5 \\ 61.8 \pm 0.4 \\ \end{array}$	50.8 50.5 50.0 48.7	62.5 64.1 63.8 61.5 hting	± 0.3 ± 0.5 ± 0.3 ± 0.4 ethod all back-propop Gradient	Sing Resi Mult Two	le-Stage dual timodal -Stage (c) Cont Zer	50.5 49.2 47.9 50.5 textualiza o-Shot 60.5 19.6 13.8	64.1 \pm 59.2 \pm 61.4 \pm 62.0 \pm ation Type 16-Shot 64.1 \pm 0.5 62.7 \pm 0.4	= 0.5 = 0.4 = 0.4

$\begin{array}{c} \textbf{Model} \rightarrow \\ \textbf{Examples} \rightarrow \end{array}$	ViT-S/16 1.5B	$\stackrel{ ightarrow}{ ext{6B}}$	ViT-B/16 6B	\rightarrow 15B	ViT-L/16 8B
ZeroShot	$\begin{vmatrix} 46.9 \\ +0.4 \end{vmatrix}$	$52.1 \\ -0.2$	$60.3 \\ -0.4$	$62.5 \\ -0.5$	64.1 -0.1
Prototypical	$57.2 \pm 0.2 +4.1$	$60.8 \pm 0.3 + 3.4$	$66.8 \pm 0.2 +3.4$	$67.4 \pm 0.3 + 3.9$	70.7 ± 0.3 $+3.3$
Default Tip	$60.3 \pm 0.1 \\ +5.4$	$63.6 \pm 0.3 \\ +4.8$	$69.5 \pm 0.2 \\ +4.3$	$70.2 \pm 0.3 + 4.3$	$73.2 \pm 0.3 +4.0$
XVal Tip	$64.7 \pm 0.2 \\ +2.4$	$67.8 \pm 0.3 + 2.3$	$73.8 \pm 0.2 \\ +1.6$	$74.7 \pm 0.2 \\ +1.6$	$77.0 \pm 0.3 \\ +1.4$
Plurality NN	$60.4 \pm 0.1 +2.5$	$63.8 \pm 0.2 + 1.9$	$69.1 \pm 0.2 + 2.3$	$69.6 \pm 0.3 + 2.6$	$72.6 \pm 0.2 + 1.8$
Rank NN	$64.8 \pm 0.1 \\ +1.7$	$68.1 \pm 0.1 + 1.3$	$73.2 \pm 0.1 \\ +1.8$	$74.1 \pm 0.2 \\ +1.8$	$76.5 \pm 0.2 \\ +1.1$
Softmax NN	$ \begin{vmatrix} 64.2 \pm 0.1 \\ +2.8 \end{vmatrix} $	$67.5 \pm 0.2 \\ +2.4$	$72.6 \pm 0.2 +2.6$	$73.3 \pm 0.3 + 2.7$	$75.9 \pm 0.2 + 1.8$
Average Gain	+3.2	+2.7	+2.7	+2.8	+2.2

Zero-Shot changes minimal

Few-Shot gains significant



Method	Train-free	IN-1K	DTD	Food101	Pets	Cars
Linear Probe [92]	×	67.3	70.0	82.9	85.3	80.4
TIP-X [84]	✓	71.1	-	-	-	-
APE [108]	1	72.1	-	-	-	-
DMN-TF [102]	✓	72.6	71.9	86.0	92.9	78.4
Clip-Adapter [21]	×	71.1	-	-	-	
MaPLe [36]	×	72.3	71.3	85.3	92.8	83.6
PromptSRC [37]	×	73.2	72.7	87.5	93.7	83.8
Tip-Adapter-F [101]	×	73.7	-	-	-	-
APE-T [108]	×	74.3	-	-	-	-
CasPL [92]	×	74.2	75.1	88.4	94.1	86.7
DMN [102]	X	74.7	75.0	87.1	94.1	85.3
SigLIxP	✓	77.9	76.7	92.6	94.4	92.8

LIxP pretraining + simple NN classifier beats

more complex / specialized / learned

The larger your context window / dictionary, the higher the gains!

If **done right**: can be inject as post-training-stage!

Put together:

It is possible to pretrain for two key functionalities at once, if:

- Loss balancing
- **Scalability** via D.o.F in representation space.
- **Dictionary lookup** objective surrogate.
- Needs scale: Batchsize informs memory size.
- Can be post-trained into a pretrained model too!

