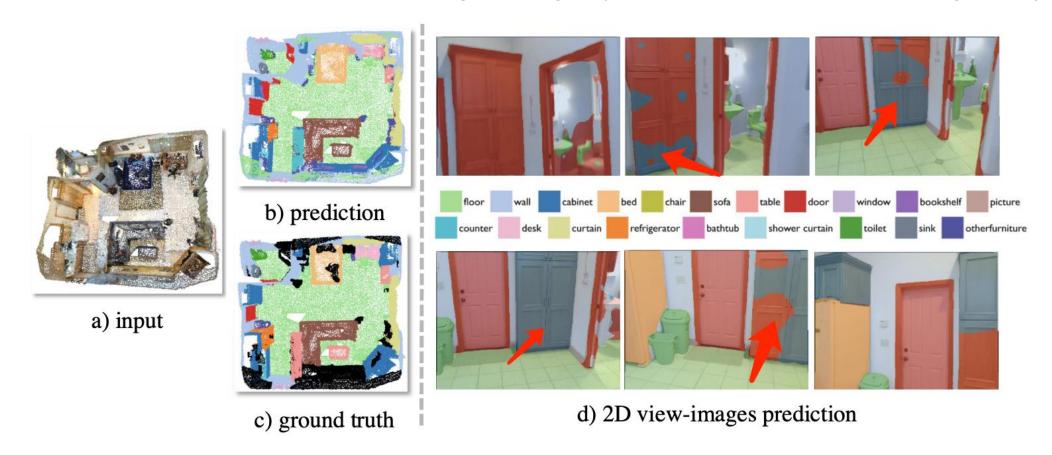


Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding

Jinlong Li¹, Cristiano Saltori¹, Fabio Poiesi², Nicu Sebe¹

¹University of Trento

²Fondazione Bruno Kessler


Outline

- Motivation
- Method
- Experiments

Motivation

Given the multi-view posed images available, distill the 2D foundation model knowledge into 3D model by 2D-3D projection

But, noises cause feature embedding ambiguity, across consecutive image sequences

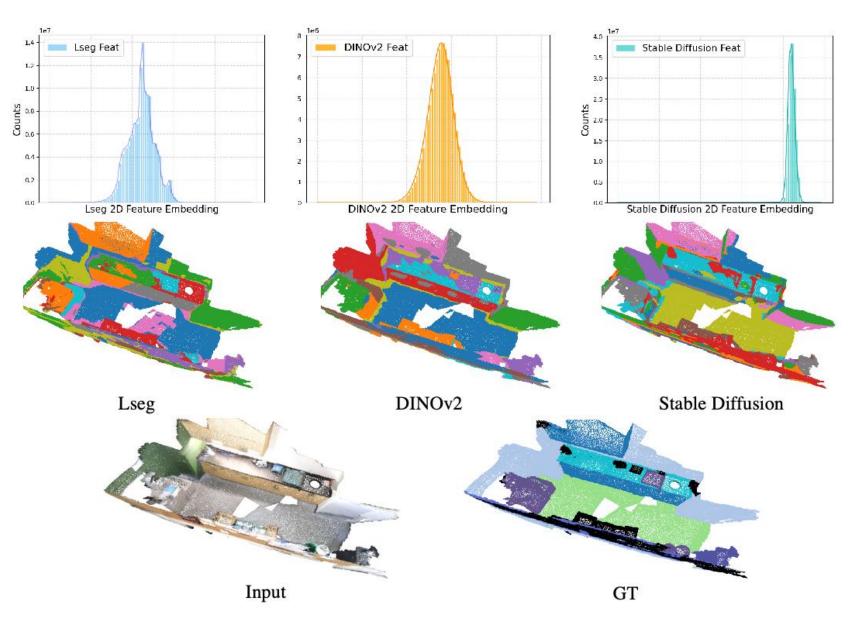
Preliminary study on image embedding ambiguity. VLM embeddings show inconsistent segmentations across multi-view images (e.g. cabinet). The guidance with ambiguous embeddings may be detrimental for supervising a 3D model training.

Motivation

Multiple 2D foundation models available, why not embrace them?

Model	Training Dataset	Dataset Size	Architecture	Objective
ViT [17]	ImageNet-1k/21k	1.2M/14.2M	ViT-B/L/G	Supervised classification
DINOv2 [61]	LVD-142M	142 M	ViT-L/14	Discriminative self-supervised learning
CLIP [66]	WebImageText	400M	ViT-L/14	Image-text contrastive learning
Stable Diffusion [68]	LAION	5B	UNet	Image-Text/Image Generation

DINOv2 --- depth and surface normal


Diffusion Model --- geometric tasks

CLIP --- visual & textual multi-modal ability

^[1] Probing the 3d awareness of visual foundation models

^[2] Lexicon3d: Probing visual foundation models for complex 3d scene understanding

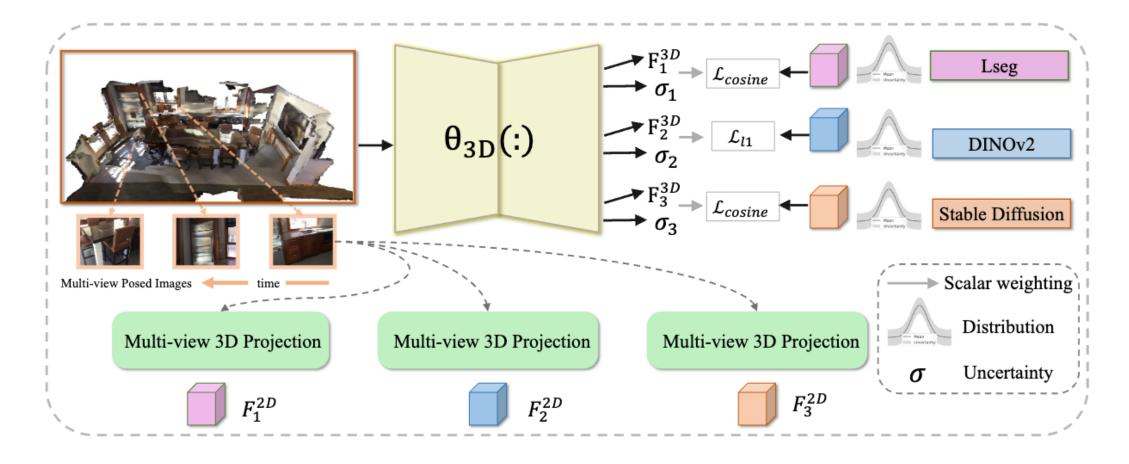
Motivation

Different 2D foundation models heterogeneous & complementary

gaussian-like feature distribution

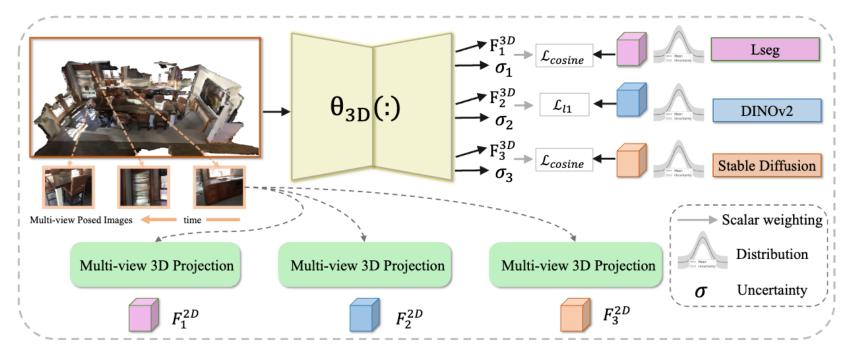
^[3] Learning transferable visual models from natural language supervision

^[5] Dinov2: Learning robust visual features without supervision


^[4] High-resolution image synthesis with latent diffusion models

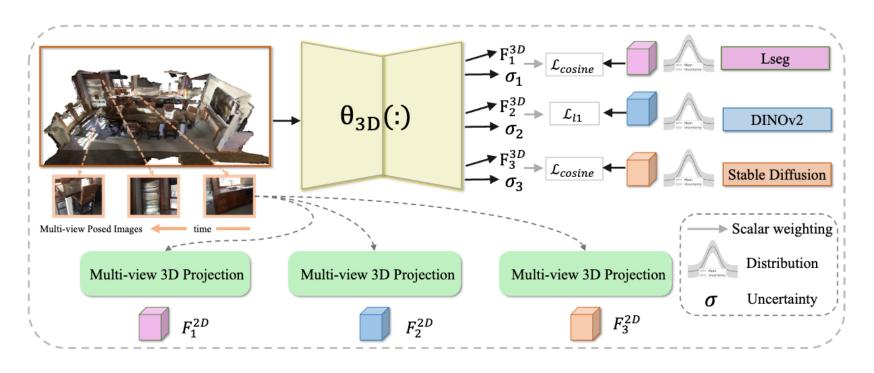
^[6] Language-driven semantic segmentation

Outline


- Motivation
- Method
- Experiments

Method

- > Semantic priors & geometric knowledge of spatially-aware 2D vision foundation models.
- > Deterministic uncertainty estimation to capture *uncertainties* across diverse 2D embedding ambiguity.
- ➤ Helping with reconciling **heterogeneous representations** from 2D VLMs into one single 3D model.


Method

$$\begin{split} \mathcal{L}_{\cos_lseg} &= 1 \, - \frac{F_1^{3D} \cdot F_1^{2D}}{\left\|F_1^{3D}\right\|_2 \cdot \left\|F_1^{2D}\right\|_2} \\ \mathcal{L}_{l1_DINOv2} &= \frac{1}{n} \sum_{i=1}^{n} \left|F_2^{3D} - F_2^{2D}\right| \\ \mathcal{L}_{\cos_sd} &= 1 \, - \frac{F_3^{3D} \cdot F_3^{2D}}{\left\|F_3^{3D}\right\|_2 \cdot \left\|F_3^{2D}\right\|_2}, \qquad F_3^{2D} &= F_3^{2D} - \mu_{F_3^{2D}} \end{split}$$

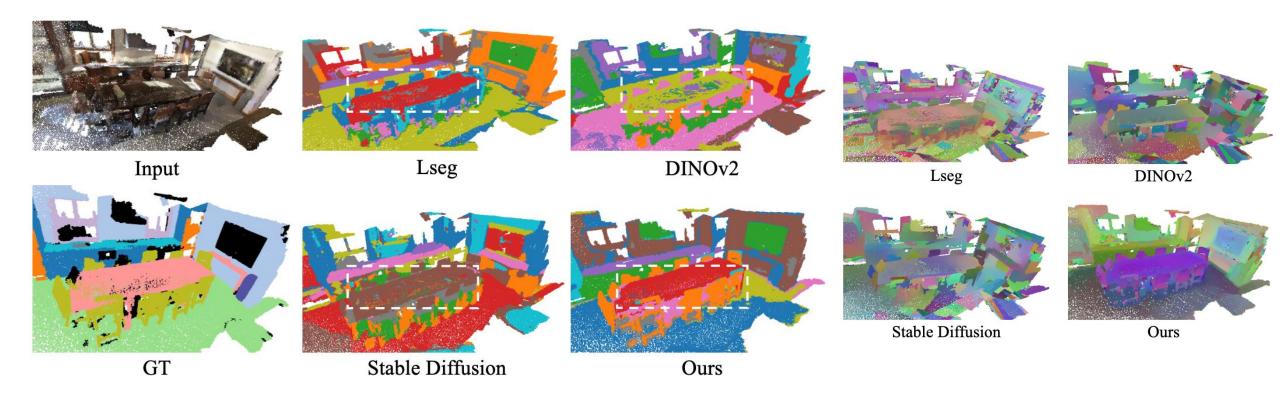
$$\mathcal{L}_{distill} = \mathcal{L}_{\cos_lseg} + \mathcal{L}_{l1_DINOv2} + \mathcal{L}_{\cos_sd}$$

Method

$$\mathcal{L}_{distill} = \mathcal{L}_{\cos_lseg} + \mathcal{L}_{l1_DINOv2} + \mathcal{L}_{\cos_sd}$$

$$p(y_{1}, y_{2}, y_{3} | f^{W}(x)) = \prod_{i=1}^{3} p(y_{i} | f^{W}(x)) = \prod_{i=1}^{3} N(y_{i}; f^{W}(x), \sigma_{i}^{2})$$

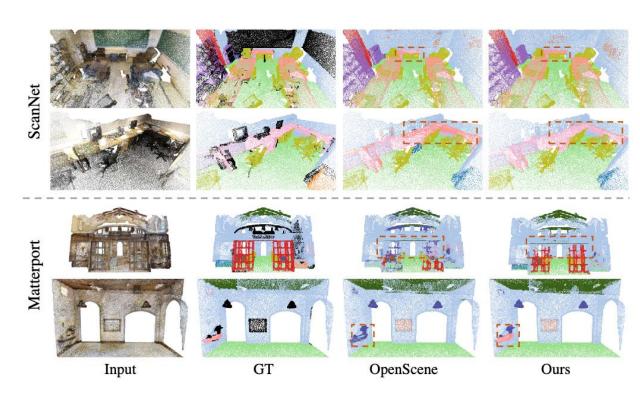
$$\mathcal{L}_{distill} = -\log p((y_{1}, y_{2}, y_{3} | f^{W}(x)))$$


$$\propto \frac{1}{2\sigma_{1}^{2}} \mathcal{L}_{\cos _lseg} + \frac{1}{2\sigma_{2}^{2}} \mathcal{L}_{l1_DINOv2} + \frac{1}{2\sigma_{3}^{2}} \mathcal{L}_{\cos _sd}$$

$$\log \sigma_{i} \rightarrow \log(1.0 + \sigma_{i})$$

Outline

- Motivation
- Method
- Experiments


2D feature structural visualizations from various VLMs --- K-Means UMAP

- DINOv2 smoother and more consistent results.
- Diffusion Model intriguing geometric characteristics.
- Lseg visual and text multi-modal alignment.

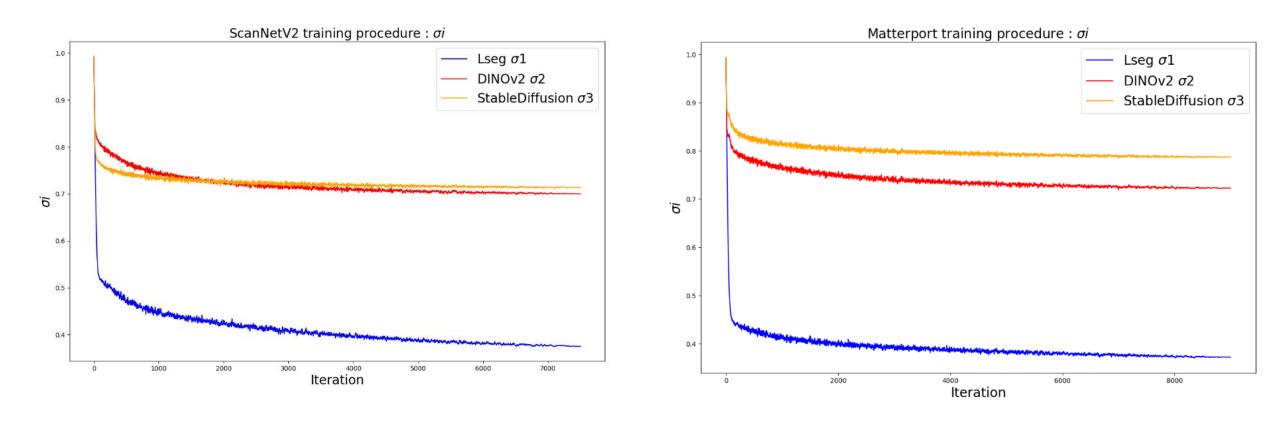
Open-Vocabulary 3D Semantic Segmentation

Type	Method	Scan	NetV2	Matterport3D	
		mIoU	mAcc	mIoU	mAcc
	TangentConv [80]	40.9	-	-	46.8
	TextureNet [31]	54.8	-	-	63.0
	ScanComplete [14]	56.6	-	-	44.9
Fully-sup.	DCM-Net [77]	65.8	-	-	66.2
гину-зир.	Mix3D [58]	73.6	-	-	-
	SupCon [101]	69.2	77.7	53.1	63.4
	LGround [71]	73.2	-	-	67.2
	MinkowskiNet [11]	69.2	77.7	53.1	63.4
Upper-bound	MinkowskiNet ^{reimple} [11]	68.96	77.41	54.12	65.57
	MSeg Voting [41]	45.6	54.4	33.4	-
	PLA [16]	17.7	33.5	-	-
	CLIP2Scene [9]	25.1	-	-	-
	CNS [10]	26.8	-	-	-
Zero-shot	CLIP-FO3D [94]	30.2	49.1	-	-
	RegionPLC [88]	43.8	65.6	-	-
	DMA-text only [46]	50.5	63.7	39.8	49.5
	OpenScene-3D [†] [64]	52.9	63.2	41.9	51.2
	OpenScene-2D3D [†] [64]	54.2	66.6	43.4	53.5
	OpenScene ^{reimple} -3D [64]	51.6	63.1	40.5	48.8
	OpenScene ^{reimple} -2D3D [64]	52.2	65.4	41.5	50.6
	(Ours) CUA-O3D (3D)	54.1	64.1	41.3	49.5
	(Ours) CUA-O3D (2D3D)	55.3	65.6	42.2	50.9

Open-vocabulary 3D semantic segmentation comparisons

Cross-dataset evaluation

ScanNetV2 (train) → Matterport3D (eval)							
Method	mIoU	mAcc					
OpenScene [64] (Ours) CUA-O3D	36.0 37.4 (+1.4)	48.0 49.2 (+1.2)					
Matterport3D (train)→ScanNetV2 (eval)							
OpenScene [64] (Ours) CUA-O3D	36.5 38.6 (+2.1)	44.0 46.6 (+2.6)					


Linear-probing segmentation

Type	Method	Scan mIoU	NetV2 mAcc	Matter mIoU	rport3D mAcc
Upperbound-fully sup. Baseline init.	MinkowskiNet [11] MinkowskiNet [11]	68.9 54.4	77.4 64.7	54.1 36.1	65.5 43.0
Concat	3-heads concat	62.1	72.7	45.8	55.3
Separate	3-heads average	61.7	72.0	45.4	55.0
Single-head	Lseg-head DINOv2-head StableDiffusion-head	59.9 61.7 61.4	71.5 72.2 72.1	- - -	- - -

Cross-dataset generalization

(trained on ScanNetV2, and zero-shot tested on the Matterport3D)

Method	Matterport21		Matterport40		Matterport80		Matterport160	
	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc
OpenScene [‡] [64]	36.0	48.0	21.1	27.5	10.8	13.9	6.0	8.1
(Ours) CUA-O3D (2D3D)	37.4	49.2	23.3	30.2	12.2	16.3	6.1	8.4

Evolutions of parameters in terms of deterministic uncertainty estimation σ_i .

Project Pages

Codes