

From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration

Poster: Jun 13th, 16:00-18:00 ExHall D Poster #387

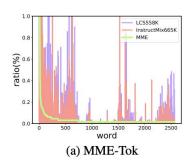
By: Mingyang Song

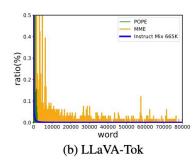
- Motivation
- Pipeline
- Methods
- Experiments

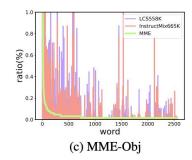
Motivation

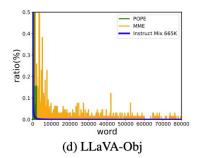
1. Current LVLM training data suffers from the "long-tail" problem (LT):

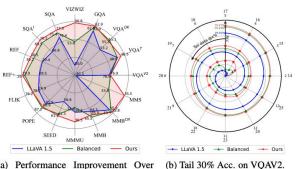
The training datasets present highly imbalanced distributions, with many tail concepts, and often differ in distribution from the test set.











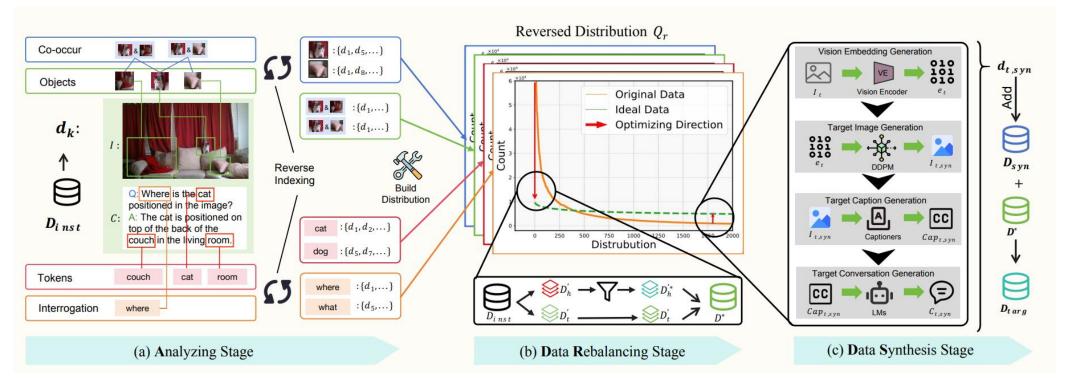
(a) Performance Improvement Over (b) Tail 30% Acc. on VQAV2 LLaVA 1.5.

2. **The model is more prone to making mistakes on tail Concepts:** We analyze the distribution of entities in failed cases by computing their positions, and compare them with those in correct cases. Failed cases tend to appear later in the distribution.

Methods	MME						POPE					
	Tok-C	Tok-W	Obj-C	Obj-W	Со-С	Co-W	Tok-C	Tok-W	Obj-C	Obj-W	Co-C	Co-W
Max	9738	10377	2708	3222	247315	257107	2242	2772	1085	1100	130043	141722
		+639		+514		+9792		+30		+15		+11679
Min	1	1	60	131	12732	20741	1	1	17	21	926	1033
		+0		+71		+8009		+0		+4		+107
Mean	1035	1068	842	1035	71123	79104	313	340	319	336	27457	30989
		+33		+193		+7981		+27		+17		+3532

3. LT in LVLMs poses unique, under-explored challenges due to cross-modal complexity, interactions, and distinct co-occurrence patterns.

Pipeline



An overview of our Adaptive Data Refinement Framework (ADR)

- a. Analyzing Stage: we first extract tokens, objects, co-occurrences, and interrogations from the training instances, then construct corresponding distribution using a reverse-indexed mapping.
- **b. Data Rebalancing stage:** we analyze the optimizing direction and adaptively rebalance the redundant data based on the entitydistribution identified in the Analyzing stage.
- **c. Data Synthesis stage**, we utilize DDPM and the latent representations of scarce image instances to synthesize the underrepresented data.

1. Analyzing Stage

1) Entity Distribution Construction

Specifically, we conduct the whole analysis procedure by constructing the frequency distribution of entities Q_e from these four perspectives among the whole training set.

Token: $e_t = \{n | n \in \text{Noun} \land n \subseteq C \text{ for } (I, C) \text{ in } D\}$

Object: $e_o = \{o | o \in I \text{ for } (I, C) \text{ in } D\}$

Co-occurrence: $e_c = \{(o_1, o_2) | | o_1 \in I \land o_2 \in I \text{ for } (I, C) \text{ in } D\}$

Interrogation: $e_w = \{q | q \in Q \land q \in C \text{ for } (I, C) \text{ in } D\}$

Data	Level	thres	% E	% DI	
	Tok	120	98.7	10.0	
T T ~ \$74 [07]	Obj	304	98.0	10.0	
LLaVA [27]	Co	24	92.7	25.0	
	Int	4895	99.6	10.0	
Avg.	-	-	97.25	13.75	

2) Reverse Indexing

Subsequently, we use the number of data instances corresponding to each

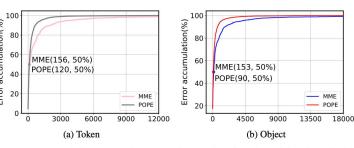
entity as frequency to build the reversed distribution Q_r : $Q_r = \{e_1 : N_{e_1}, e_2 : N_{e_2}, \dots, e_n : N_{e_n}\}$ where e_i means entity item and N_{e_i} means the number of corresponding data instances of e_i .

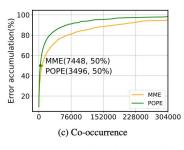
Surprisingly, among four perspectives, an average of 97.25% entries account for only 13.75% data

instances on average,

3) Discovery

- a. Tail data accounts for more failed cases.
- b. Distribution varies between train and test data.





2. Data Rebalancing Stage

We construct entity-wise sampling probabilities to downsample redundant data and select a core dataset based on entity frequency and coverage.

3. Data Synthesis Stage

1) Language Data Synthesis

We rewrite head-biased data by replacing dominant concepts with tail synonyms via LLM-guided paraphrasing.

2) Visual Data Synthesis

- a. given a tail instance $d_t = (I_t, C_t)$ our objective is to generate an image similar to I and produce corresponding instruction data
- b. We leverage ControlNet to generate images that retain the original content while exhibiting a similar visual style $I_{t,syn} = G(I_t, p_{def})$.
- c. We use an off-the-shelf vision captioner to generate captions for the synthetic image, which are then expanded into full conversations using LLMs for visual instruction tuning.

Algorithm 1 Pseudo Code for Data Resampling

```
# D: raw training set;
    C: target perspectives list
    tau: the threshold for entities;
     D_bal: the rebalanced data, a.k.a. D*;
    n_p, alpha: hyperparameters
6 D bal=[]
7 for pers in C:
                      # build prob dict
       entity_dist =
          entity_distribution_construction
           (D, pers)
       prob_dict[pers] = {ent:tau[pers]/
           entry_dist[ent] for ent in
          entry_dict.keys() }
10 for instance in D: # data rebalancing
       pass_cnt = 0
       for pers in C:
           for entity in instance['entity'
               ][pers]:
               if random.random() <</pre>
                   prob_dict[pers][entity]:
                   pass\_cnt += 1
15
                   break
       if pass_cnt > n_p and random.random
           () < alpha:
           D_bal.append(instance)
```

Experiments

▶ Quantitive Analysis of Different Methods on Popluar Benchmarks

Method	IT*	VQA ^{OK}	SEED ²	QB ²	MMS	MME ^P	SQA ^I	MMMU	VQA^{T}	GQA	MMB	VQA ^{v2}
LLaVA 1.5	665.0K	53.2	48.7	47.3	33.5	1510.7	69.3	35.3	46.0	61.9	64.3	76.6
+DR	581.0K	55.3	57.2	46.8	33.8	1470.6	69.5	34.8	46.0	62.8	65.5	76.9
+DR +DS	665.0K	57.4	57.4	49.6	35.5	1512.8	70.4	36.7	47.2	62.9	65.0	76.9
ShareGPT4V	1246.0K	54.0	59.6	44.2	34.7	1560.4	68.9	35.1	50.2	63.3	68.0	78.6
+DR	1168.0K	56.7	59.6	44.9	35.0	1542.3	68.6	35.7	50.9	63.9	67.9	78.7
+DR +DS	1246.0K	57.9	59.9	45.7	35.5	1564.9	69.4	36.1	50.9	63.7	68.8	78.7

Comparison with models trained with different methods on different benchmarks.

Quantitive Analysis among Different Data Rebalancing Methods

Method	IT	GQA	SEED	SEED ^{v2}	POPE	MMB
Baseline	665K	62.0	61.0	57.2	87.2	65.5
EL2N	581K	62.5	53.6	47.4	87.2	65.2
Perplexity	581K	62.3	53.4	47.4	86.8	63.7
CLIP Score	581K	62.5	53.0	47.0	87.0	64.5
COINCIDE	133K	59.8	-	-	86.1	63.1
Ours-DR	581K	62.8	61.0	<u>57.2</u>	87.2	65.5
Ours	665K	62.9	61.3	57.4	87.4	65.0

► The Impact of ADR on Tail concepts

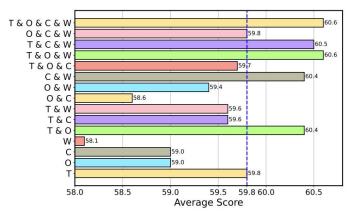
36.4.1	IT	ScienceQA							
Methods	IT	@5	@10	@15	@20	H@80	Overall		
LLaVA 1.5	665.0K	67.9	70.0	67.9	68.5	74.6	69.3		
+DR	581.0K	69.2	69.7	67.8	68.5	76.2	69.5		
+DR +DS	665.0K	70.1	70.5	68.3	69.0	78.6	70.2		

Popular Data Rebalancing Methods.

Tail concept prediction accuracy on ScienceQA-IMG

Experiments

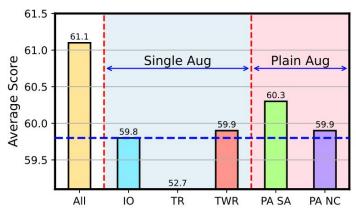
Ablation Study



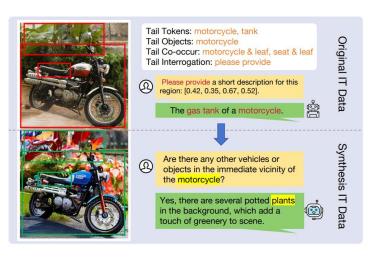
Ablation study on data rebalancing combinations.

Visualization

Qualitative comparison between LLaVA 1.5 and LLaVA 1.5 w/ ADR



Ablation study on data synthesis methods.



Comparison between the original instruction-tuning (IT) data and our synthesized IT data.

Thanks!

Poster: Jun 13th, 16:00-18:00 ExHall D Poster #387

