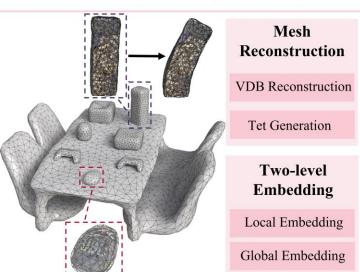
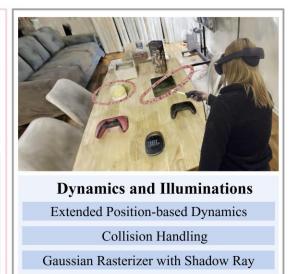
DecoupledGaussian: Object-Scene Decoupling for Physics-Based Interaction

Motivation: Simulation from Reality

PhysGaussian: start the trend of simulation captured from real scenes

- Introduce GS Kinematics: rotate covariance matrix, spherical harmonic coefficients
- Insert Gaussian Splatting (GS) into the Material Point Method (MPM) simulation engine.




Motivation: Simulation from Reality

VR-GS deforms semantically segmented objects by SAM through XPBD simulation engine

GS Embedded Geometry Reconstruction

VR-GS Simulation and Rendering

[Image Source: VR-GS Siggraph 2024 Conference]

Limitation: Object Depart from Surface

Current methods fail to simulate object motion departing from the contact surface.

VR-GS

FeatureSplatting (ECCV2024, Language-driven)

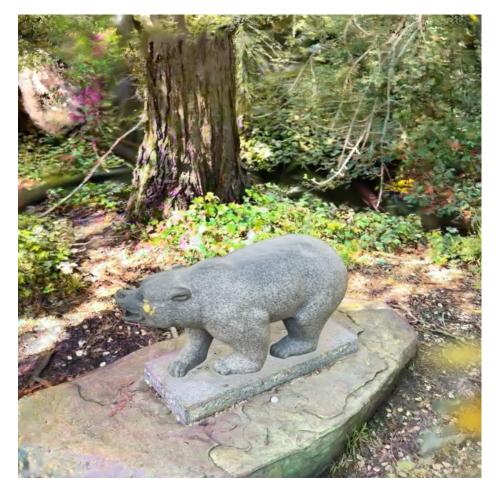
PhysGaussian

The core issue is the failure to recover occluded geometry and texture.

Our task: Decoupling

Input Video

Scene



Object

Support Various Interactive Simulation

Scene Collisions

Object Melting

DecoupledGaussion: Meaning and Application


Autonomous driving Simulation

VR/AR Interaction

Entertainment industry

Robotic Learning Interaction

Our pipeline

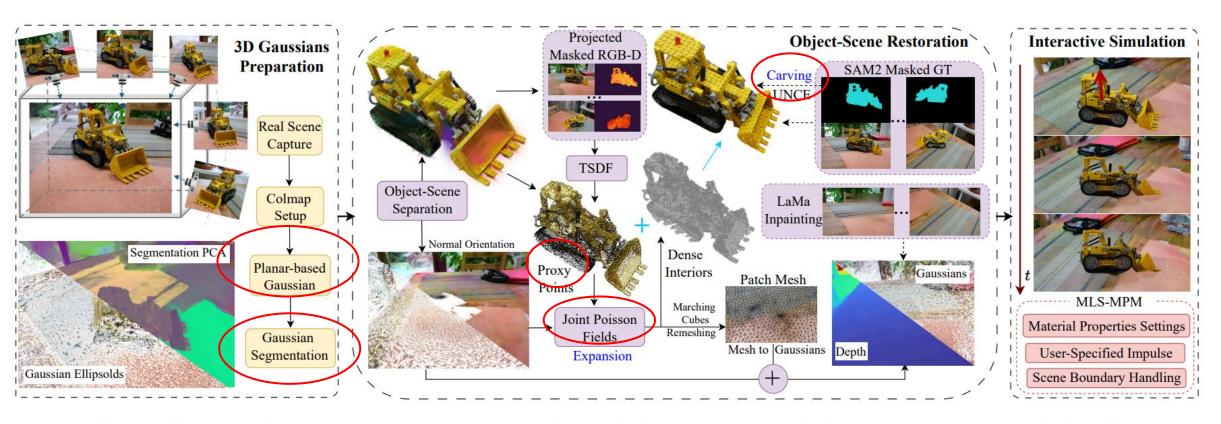


Figure 3. **System Overview**. DecoupledGaussian is an interactive simulation system that enables objects to detach from their initial contact surfaces after applying our proposed restoration pipeline, driven by user-specified impulses (red arrow on the right).

3D Gaussian Preparation: PGSR

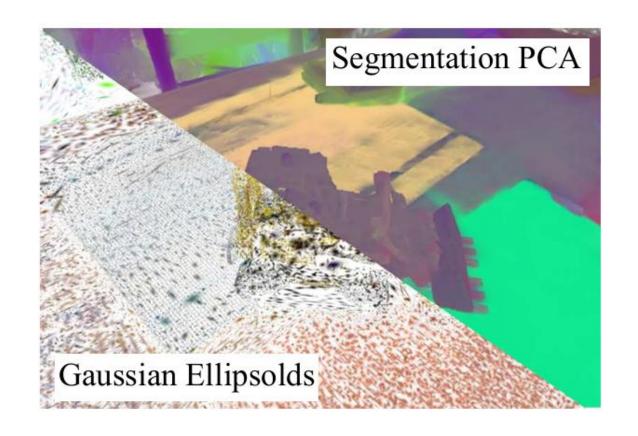
The goal of using PGSR:

- 1) estimate correct geometry from GS
- 2) remove the large floaters in the scene

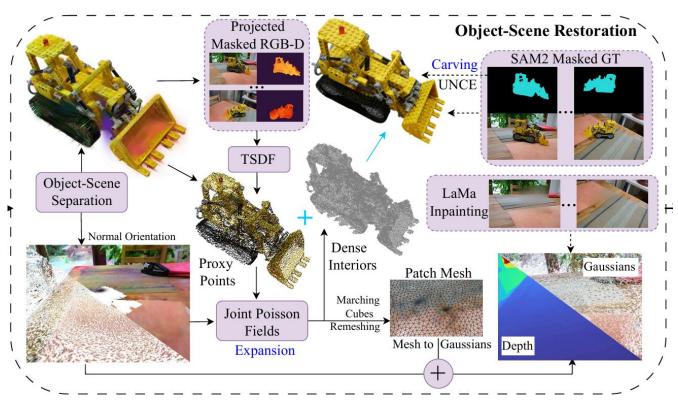
Planar-based Gaussian Splatting (PGSR):

- -- Flatting the ellipsoid
- -- Unbiased depth estimation
- -- Single/Multi-view geometry regularization
- -- Exposure compensation

Ours



Opacity is set to1, with × 0.4 scaling for better Gaussian kernel visualization.


[PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction, TVCG2024]

3D Gaussian Preparation: Segmentation

- 1. Select 2Dsegmentation labels from SAM2
- 2. Manually selecting classes in the first frame
- 3. Each kernel is assigned semantic features
- 3. A gating network to predict segmentation
- 4. Local feature smoothing.

Object-Scene Restoration

- User-specified click position to get object (affinity)
- 2. Contact-surface use KNN to remove nearby artifacts
- 3. Restore Object and Contact scene
 - -- Joint Poisson Fields
 - -- Proxy Points
 - -- Unilateral Negative Cross Entropy
 - -- Gaussian Restoration

2D Inpainting Tools

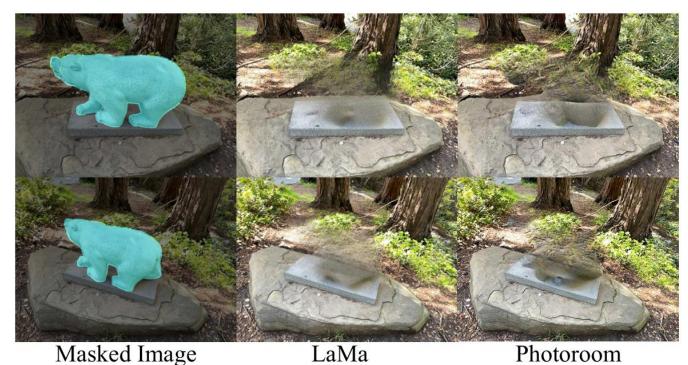


Figure 2. Inpainting tools (LaMa [79]; PhotoRoom [1]) introduce artifacts and inconsistent textures across frames.

- (1) inpainted regions often fail to blend seam lessly with surrounding geometry, creating artifacts
- (2) texture inconsistencies across frames due to the lack of robust video inpainting tools.

Our approach: prioritizing geometry restoration, leveraging *intrinsic GS geometry priors* to ensure a coherent surface even when texture inpainting is imperfect

Joint Poisson Fields

Geometry Prior: assuming both Object and Scene are smooth, closed shapes

We resort to Poisson Surface Reconstruction, equivalent to the winding number field

Joint Poisson Fields STEPS

- 1. Solving Screen Poisson Indicator for object and scene. Points&Normals
- 2. Coordinates transformation
- Solving conflicted regions, by curvature and prioritizing surface
- 4. Extract **dense interior points** for objects while marching cubes to get cropped **mesh patch** for surface

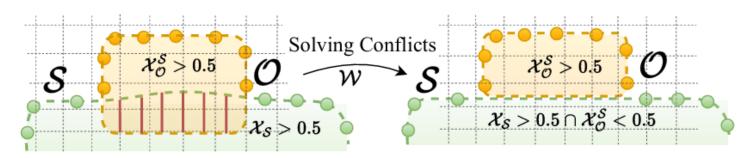
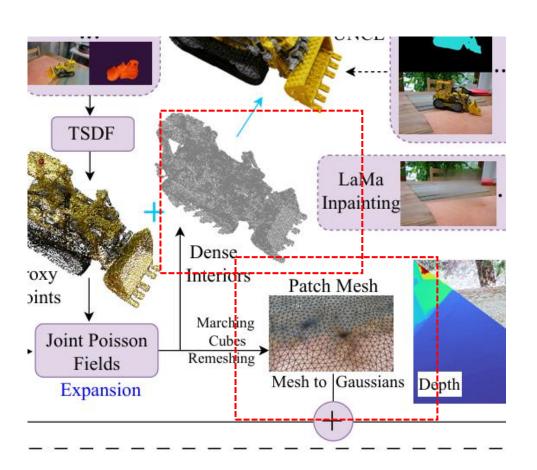



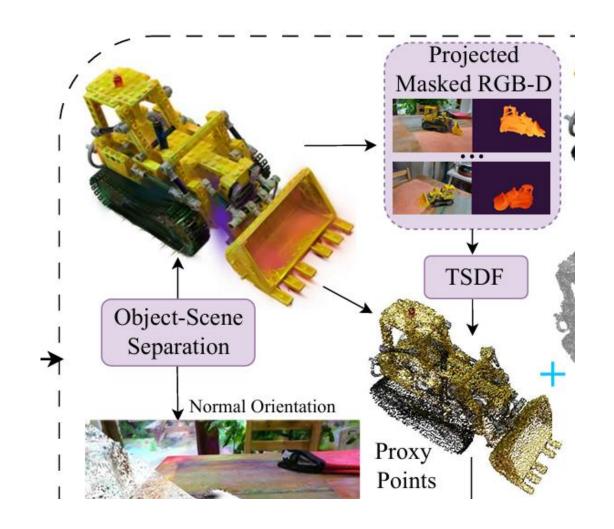
Figure 4. Joint Poisson Fields W first reconstruct \mathcal{O} and \mathcal{S} independently, then resolve conflicts (red area) by defining a boundary that separates them into distinct, non-intersecting entities.

[Adaptive multigrid solvers]

Joint Poisson Fields

Dense Points: helpful for MPM simulation

Patch Mesh: fix the broken geometry of the Surface


How about the input to Joint Poisson Fields:

- Contact Surface
 - -- Gaussian Centers as points
 - -- Minimum scaling as normal (90-degree disambiguate)
- Target Object
 - -- Geometric complexity
 - -- Use Proxy Points instead of Gaussian Centers

Proxy Points: Enhance Geometry Estimations

To get the proxy points, we use TSDF but different from others:

- Projected depth mask to boost fusion speed
 Obtain the projected mask by setting
 zero/one opacity
- 2. Segment the final proxy points based on raw Gaussian kernel with nearest neighbor search

Proxy Points: Quick qualitative ablation

Figure 5. Ablation for $\mathcal{P}_{\mathcal{O}}$. Independent Poisson reconstruction of object \mathcal{O} using Gaussian centers $\{k_q\}_{g\in\mathcal{O}}$ yields poor mesh quality compared to using proxy points $\mathcal{P}_{\mathcal{O}}$. Our joint Poisson field \mathcal{W} , which integrates the scene surface \mathcal{S} , effectively removes the overextended regions (highlighted in red). The final dense points $\mathcal{P}_{\mathcal{O}}$ are then combined with proxy points $\mathcal{P}_{\mathcal{O}}$ for Gaussian restoration and continuum simulation.

Unilateral Negative Cross Entropy

- Geometry Expansion from Poisson:
 - -- Over-smooth close surface
 - -- Influence by noises or outliers
- -- Introducing particles beyond observable viewpoints
 - -- Points Converted to GS, we will get like:

Opacity is set to one for TRUCK to highlight artifacts

Unilateral Negative Cross Entropy

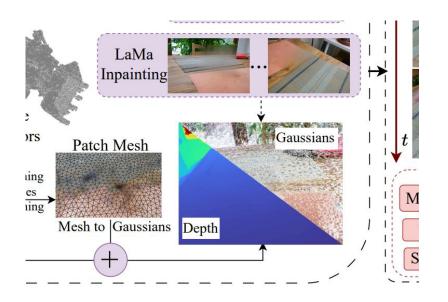
Multi-view carving:

- Silhouette consistency between rendered and GT
- Discrepancy between blended opacity and 2D GT object mask

$$\text{UNCE}(p) = -(1 - M_{\mathcal{O}}^{\text{GT}}(p)) \log(1 - \mathbb{1}_{\mathcal{O}}(p)).$$

2D GT object mask Blended opacity

- Every 100 iterations, we clean Gaussians with low opacity



Gaussian Restoration

- Object, Points to Isometry Gaussian, during finetune:
 - -- UNCE multi-carve geometry artifacts
 - -- Fine-tune textures based on GT-masked train images.

- Contact Surface: fixed by patch mesh
 - -- From mesh to new 3D flattened Gaussian
 - -- 2D Tools to adjust the texture properties

Interactive Simulation

- User-specified force as an impulse
- Manually specified material properties
- Setting boundary conditions to bounce back
- Estimate Normals of the Ground plane by RANSAC to set up gravity.

• • • • • •

Evaluation

Object-Scene Interaction Simulation

Object Restoration

Scene Restoration

Qualitative Evaluation: Object Restoration

Segmented Gaussians

GIC [NIPS 2024]

PhysGaussian [CVPR 2024]

Ours

GIC and PhysGaussian don't account for incomplete object surfaces during simulation, unlike our approach.

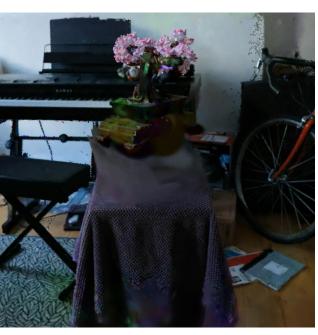
Qualitative Evaluation: Scene Restoration

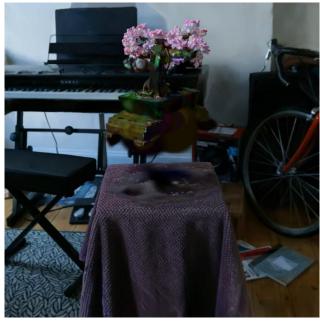
GScream [ECCV 2024]

VR-GS [SIGGRAPH 2024]

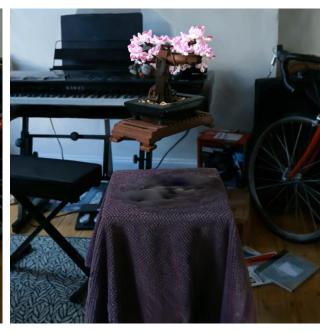
Ours

since we don't rely on 2D inpainting tools for geometry restoration, we avoid the catastrophic errors commonly seen in Gscream or VR-GS.


VR-GS (Scene) + PhysGaussian (Object)


Ours (Scene) + PhysGaussian (Object)


Ours (Scene) + GIC (Object)


Ours (Scene) + Ours (Object)

Correct geometry recovery of both the scene and object, as in our method, is crucial for the simulation.

VR-GS (Scene) + PhysGaussian (Object)

Ours (Scene) + PhysGaussian (Object)

Ours (Scene) + GIC (Object)

Ours (Scene) + Ours (Object)

VR-GS (Scene) + PhysGaussian (Object)

Ours (Scene) + PhysGaussian (Object)

Ours (Scene) + GIC (Object)

Ours (Scene) + Ours (Object)

VR-GS (Scene) + PhysGaussian (Object)

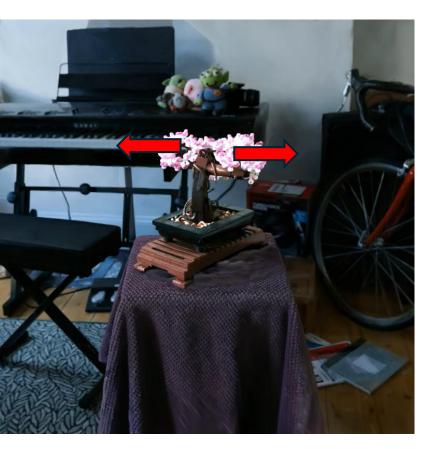
Ours (Scene) + PhysGaussian (Object)

Ours (Scene) + GIC (Object)

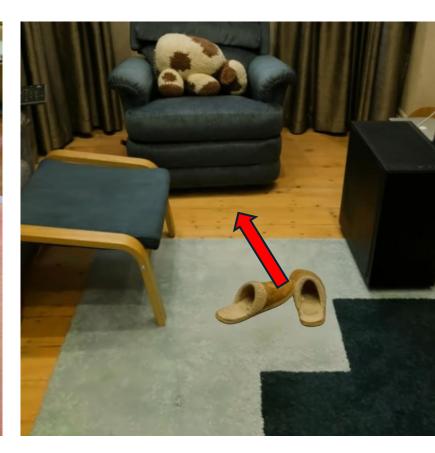
Ours (Scene) + Ours (Object)

Of course, our method can also be applied to multiple objects.

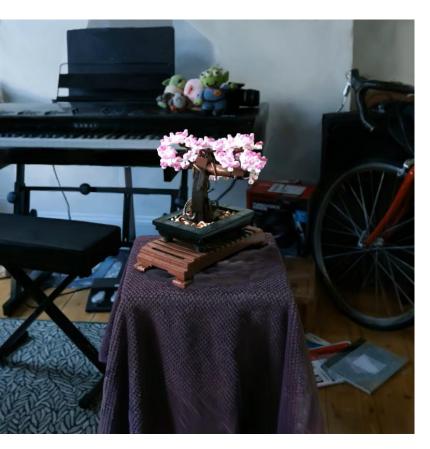
Object Restoration


Segmented Gaussians

GIC [NIPS 2024]


PhysGaussian [CVPR 2024]

Ours


More Cases (Ours)

More Cases (Ours)

Interactions Across Diverse Scenes

Input Video

Truck in Bicycle

Quantitative Evaluation

Table 1. **User Study**. Participants rated the fidelity of restoration and interactive simulation in a moving-camera video.

Scene Restoration			Object Restoration				
Methods	SRQ ↑	Time ↓	Methods	ORQ ↑			
GScream [83]	1.94	~70m	PhysGaussian [89]	1.40			
VR-GS [38]	2.12	$\sim 7 \mathrm{m}$	GIC [6]	1.60			
Ours	3.48	\sim 1m	Ours	4.03			
Object-Scene Interactive Simulation							
Methods			ISF ↑				
VR- $GS(S)$ + $PhysGaussian(O)$			1.50				
Ours(S) + PhysGaussian(O)			2.60				

2.73

4.35

Ours(S) + GIC(O)

Ours(S) + Ours(O)

SQR: Scene Restoration Quality

OQR: Object Restoration Quality

ISF: Interactive Simulation Fidelity

Quantitative Evaluation

Composite complete real scene and real object

Placed by Rigid simulation PyBullet

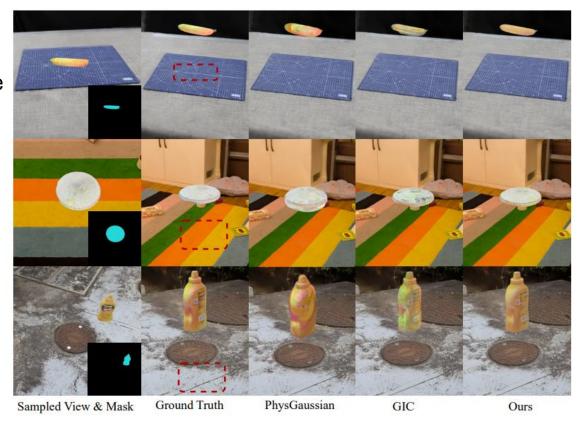


Figure 8. **Benchmark Comparisons.** A test viewpoint visualizes comparisons using the restored scene from our method, with inpainting regions marked by a red rectangle in the Ground Truth.

Table 2. **Quantitative Comparisons & Ablations.** We create a decoupling benchmark with comprehensive metrics comparing baselines and ablations to validate design choices.

Scene Restoration							
Methods	PSNR ↑	LPIPS \downarrow	FID↓	$CD(\times 10^{-3})\downarrow$			
GScream [83]	17.82	0.56	42.28	44.00			
VR-GS [38]	25.13	0.32	58.50	6.41			
Ours	27.32	0.30	32.07	4.40			
Object Restoration							
Methods	PSNR ↑	LPIPS \downarrow	FID↓	$CD(\times 10^{-3})\downarrow$			
PhysGaussian [89]	24.46	0.07	227.60	0.53			
GIC [6]	26.62	0.06	201.91	0.73			
Ours	30.32	0.04	138.75	0.17			
Object-Scene Interaction Simulation							
Methods	PSNR ↑	LPIPS \downarrow	FID↓	Motion-FID \downarrow			
PhysGaussian [89]	19.48	0.37	112.55	54.79			
GIC [6]	20.90	0.31	134.56	47.47			
w/o dense $P_{\mathcal{O}}$	21.19	0.29	98.19	48.39			
w/o Proxy $\mathcal{P}_{\mathcal{O}}$	21.08	0.30	90.26	36.01			
w/o ${\cal W}$	20.97	0.30	96.16	42.27			
Ours	21.33	0.29	86.98	31.69			

Geometry accuracy using CD Motion accuracy use Motion-FID

Ablations

Dense Points prevent collapse under gravity, while Joint Point Fields eliminate intersection regions.

Ours (Scene) + Ground Truth (Object)

Ours (Scene) + Ours (Object)

Ours (Scene) + w/o Dense Points

Ours (Scene) + w/o Joint Poisson Fields

Ablations

Note: Opacity is set to one for TRUCK to highlight artifacts

Ours (Scene) + Ours (Object)

Ours (Scene) + w/o UNCE (Object)

Take away

- Restore the object, and contact scene to simulate.
- Not rely on 2D impainting models to repair broken geometry.

Thank you!

Scan to our project website