

Preserve or Modify? Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR///swill Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR/// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR// Context-Aware Evaluation for Balancing Preservation for Balancing

Yoonjeon Kim¹*, Soohyun Ryu*, Yeonsung Jeong, Hyunkoo Lee, Joowon Kim, June Yong Yang, Jaeryong Hwang², Eunho Yang¹³ ¹KAIST ² Korea Naval Academy ³AITRICS (* Equal contribution)

Motivation & Problem Statement

Evaluation Metric for Text-guided Image Editing

- Evaluation on text-guided editing has been relying on either preservation or modification-centric metrics.
- No single reliable metric capable of evaluating both aspects exists.

"Turn into Ironman

Preserve Blue cap



Sitting down

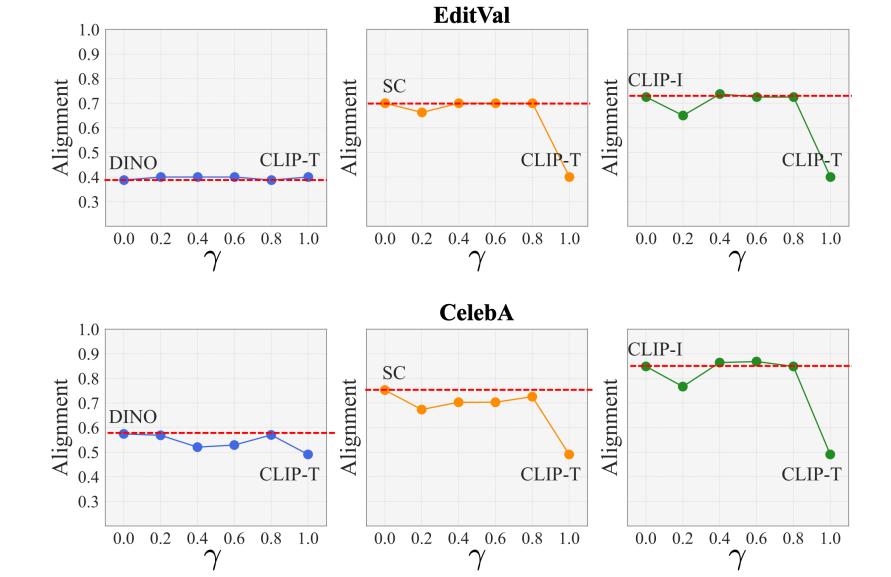
(b) Guideline (a) Given Context

Preserve OR Modify? $P \checkmark M X m \triangle P \checkmark$ $P \checkmark M X m \triangle P \checkmark$ $P X M \checkmark M \checkmark M \checkmark$ $P X M \checkmark M \checkmark M \checkmark$ Presv. Modif. CLIP_{dir} AugCLIP

(c) Evaluation Standard of Metrics

Combination of Existing Metrics

• Interpolating preservation and modification centric metrics do not improve alignment with human preferences (orange line).

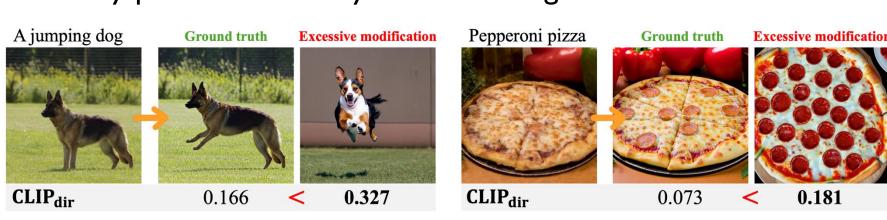


Directional CLIP Similarity Prefer Excessive Modification

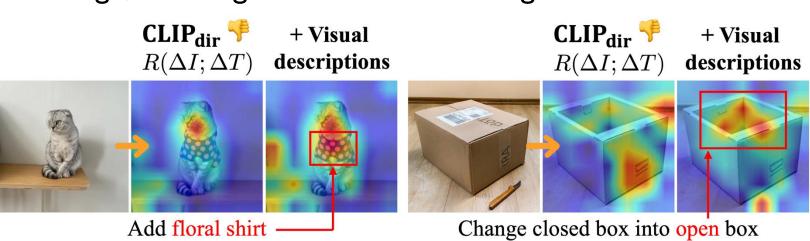
• Directional CLIP Similarity,

$$\mathsf{cs} \Big(E(I_{\mathrm{edit}}) - E(I_{\mathrm{src}}), E(T_{\mathrm{trg}}) - E(T_{\mathrm{src}}) \Big)$$

blindly prefer excessively modified images.



• Directional CLIP Similarity fail to pinpoint edited regions on the image, focusing on edit-irrelevant regions.



Proposed Method – AugCLIP

AugCLIP – Overview

MLLM

- Attribute extraction from given source image and target text.
- Source attributes: CLIP representation of texts that describe the source image.
- Target attributes: CLIP representation of the texts that describe the target text.

image: $\operatorname{CLIP}(I_{\operatorname{src}}) + v$

• AugCLIP is a cosine similarity measured between the edited

image and the ideal edited image, represented by adding a

modification vector to the CLIP representation of source

 $\mathtt{AugCLIP} := \mathtt{cs}\left(\mathtt{CLIP}\left(I_{\mathtt{edit}}\right),\mathtt{CLIP}(I_{\mathtt{src}}) + v\right)$

Criteria 1: Modified into target?

Criteria 2: Preserve source?

Minimum modification satisfies both criteria 1 & 2

• Step 1: Find a classifier in CLIP space that determines if an

 $g(x) = \mathbf{w}^T x + b$

edited image is classified as target text or source image.

• How to define the "ideal edited image" in CLIP?

Criteria 1: yes 🛕 Criteria 2: Yes

Image 2

Experiments

Models $AugCLIP \uparrow$ Dataset Human \mathbf{ELITE} 0.1132 (2)0.7642 ① 0.8478DreamBooth BlipDiffusion 0.08360.7579 (0.6525CustomDiffusion 0.1348 ① 73.84 (3) 0.6156 (3) 0.0263P2P0.8521 (0.6133EditVal InstructPix2Pix 0.8242 (0.48550.8155 (3) DiffEdit 0.3214StyleCLIP 0.84840.6831CelebA Multi2One 0.7750 (3) 0.3197

• The ranking of different editing models perfectly aligns with

human evaluation result, where models are demonstrated in

Superior Alignment with Human Preferences

the order of rankings by human evaluation.

• AugCLIP shows the highest pearson correlation with human preferences.

Metrics	Presv. Modif.		\mathbf{CelebA}	${f EditVal}$	DreamBooth
$\overline{ ext{L2}}$	✓	X	0.653	0.348	0.464
LPIPS	1	X	0.465	0.360	0.286
DINO	1	X	0.574	0.348	0.286
\mathbf{SC}	1	X	0.752	0.764	0.571
CLIP-I	√	X	0.848	0.730	$\boldsymbol{0.857}$
CLIP-T	X	√	0.491	0.399	0.321
$\operatorname{CLIP_{dir}}$		✓	0.673	0.697	0.357
AugCLIP	√	√	0.883	0.831	0.857

• Step 2: Fit the classifier to CLIP representations of source and target attributes.

• Step 3: Derive the CLIP representation of ideal image that satisfies

$$\min \|\mathbf{v}\|$$
 subject to $\mathbf{w}^T \left(E(I_{\text{src}}) + \mathbf{v} \right) + b > 0.$

• Derivation of ideal modification vector v:

$$\mathbf{v} = c_{\min} \mathbf{w} = rac{-(\mathbf{w}^{ op} I_{\mathrm{src}} + b)}{\|\mathbf{w}\|^2} \mathbf{w}$$

Evaluation Robustness to Various Editing Scenarios

	Pos. Add	Obj. repl.	Alter Parts	Background
$\overline{ ext{CLIP}_{ ext{dir}}}$	0.667	0.688	0.730	0.5
AugCLIP	1.0	$\boldsymbol{0.75}$	$\boldsymbol{0.838}$	1.0
	Texture	Color	Action	Style
$\overline{ ext{CLIP}_{ ext{dir}}}$	0.806	1.0	1.0	0.529
AugCLIP	0.742	1.0	1.0	0.647

• Alignment with human preferences excel directional CLIP similarity across various editing scenarios.