

Fortifying Federated Learning Towards Trustworthiness via Auditable Data Valuation and Verifiable Client Contribution

K Naveen Kumar¹, Ranjeet Ranjan Jha², C Krishna Mohan¹, and Ravindra Babu Tallamraju³ ¹IIT Hyderabad, India ²IIT Patna, India ³Sahaj AI Software Pvt Ltd., India

Problem Statement

- Federated Learning (FL) facilitates clients to collaborate on training a shared machine learning model without **exposing individual private data.**
- Requires auditability and verifiability to ensure local data integrity and trustworthy client updates.
- Existing FL frameworks rely on a server for client selection and aggregation, creating a single point of failure and privacy risks.

Proposed Solution: FAVD (Figure 1)

- Federated auditable and verifiable data valuation (FAVD) ensures auditability and verifiability of client contributions without a central authority.
- Utilizes **local data density functions** to construct a global density function for transparent and effective data valuation before training.
- Gaussian noise is added to shared density functions to mitigate privacy risks.

Key Contributions

- Privacy-preserving data valuation independent of any predefined training algorithm.
- Ensures benign updates even in the presence of malicious data.
- Theoretical analysis on convergence, auditability, verifiability, and resilience against data poisoning threats.
- Improves fairness by **distinguishing** high-impact contributions from low-quality data.
- Comprehensive evaluation on five benchmark datasets with various models: Covid-chestxray (ResNet50), Camelyon17 (DenseNet121), HAM10000 (FL-FixCaps), CIFAR10 (ResNet18), CIFAR100 (ResNet50).
- Introduces novel metrics for auditable data valuation
 - Malicious Sample Detection Rate (MSDR)
 - Benign Misclassification Rate (BMR)
 - Client Contribution Consistency (CCC) Score

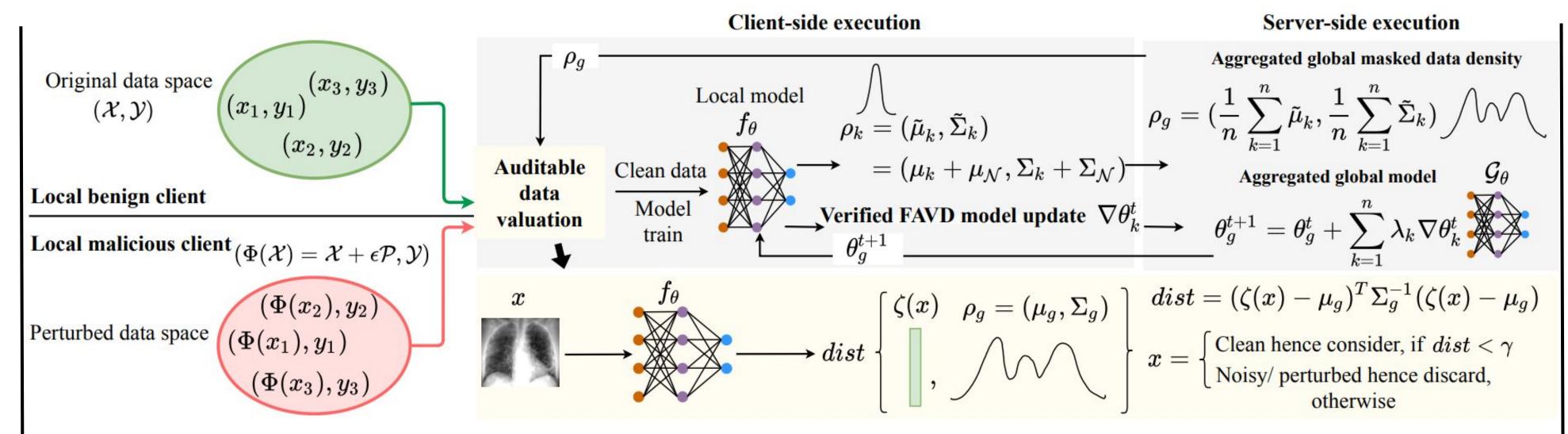
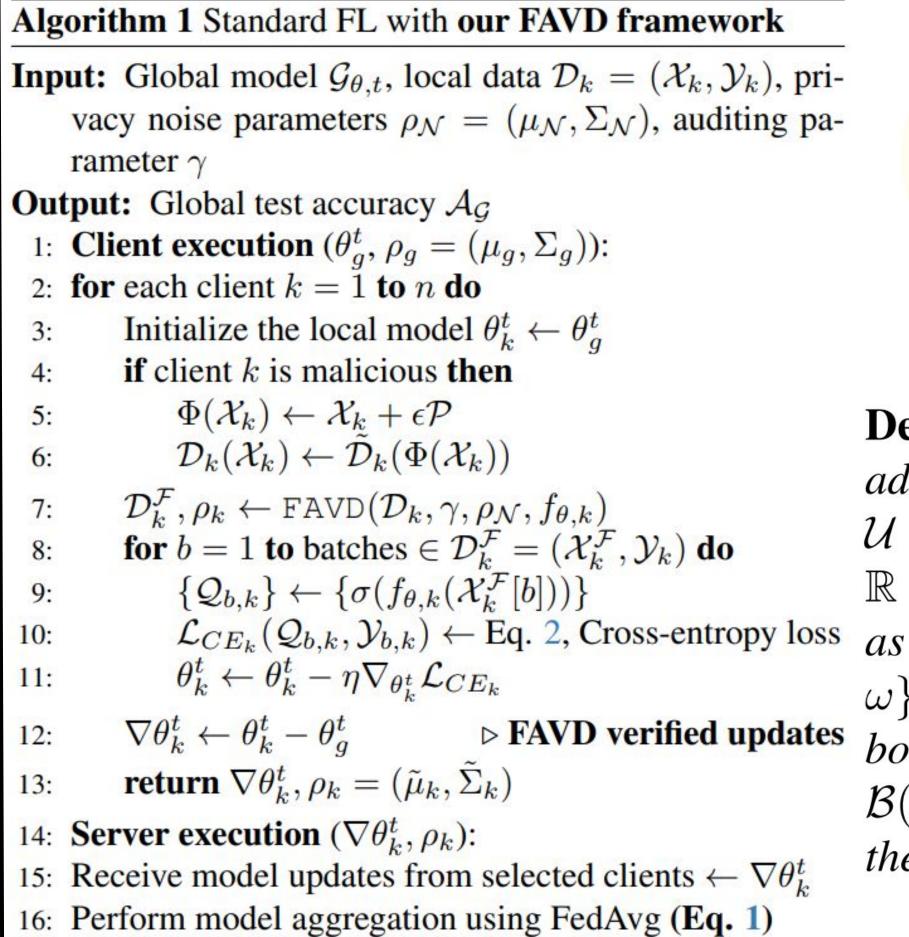


Figure 1. Overview of the FAVD-integrated FL system, with client-side and server-side execution.



17: Update the global model parameter: θ_a^{t+1}

18: Update $\rho_g \leftarrow (\frac{1}{n} \sum_{k=1}^n \tilde{\mu}_k, \frac{1}{n} \sum_{k=1}^n \tilde{\Sigma}_k)$

19: Share θ_g^t , $\rho_g = (\mu_g, \Sigma_g)$ to all the clients

20: Compute $\mathcal{A}_{\mathcal{G}} \leftarrow \text{Test}\left(\mathcal{G}_{\theta_{n}^{t+1}}, \mathcal{X}_{test}\right)$

21: return A_G

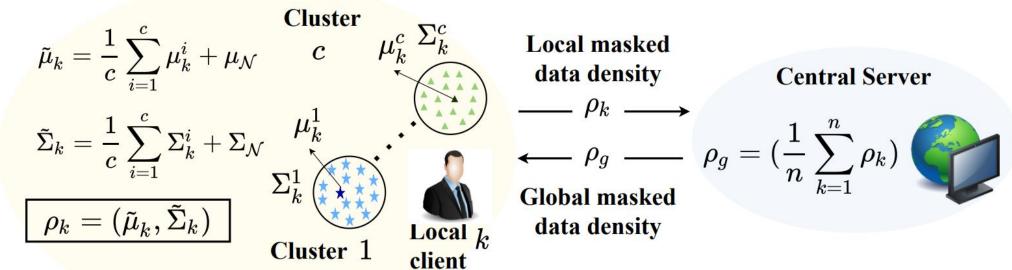


Figure 2. FAVD auditable data valuation process

Definition 3.1 (ω -bounded poisoned data.) Let \mathcal{F} be the adversary's function class. An adversarial perturbation \mathcal{U} is characterized by the mapping $\mathcal{U} := \mathcal{F} \times \mathcal{X}_k \times \mathbb{R} \to \Phi(\mathcal{X}_k)$. For $\omega > 0$, we define the L_2 norm ball as $\mathcal{B}_2(\mathcal{X}_k,\omega) := \{\Phi(\mathcal{X}_k) \in \mathbb{R}^d : \|\Phi(\mathcal{X}_k) - \mathcal{X}_k\| \le \omega\} \cap \mathcal{X}_k$. We classify the adversarial perturbation \mathcal{U} as ω -bounded if it adheres to the condition $\mathcal{U}(\mathcal{F},\mathcal{X}_{k,i},\mathcal{Y}_{k,i})_{i=1}^{\nu} \in \mathcal{B}(\mathcal{X}_{k,i},\omega)_{i=1}^{\nu}$. Furthermore, for a given $\omega > 0$, we denote the worst-case adversarial perturbation (\mathcal{U}^+) as

$$\mathcal{U}^{+} := \underset{\Phi(\mathcal{X}_{k}) \in \mathcal{B}(\mathcal{X}_{k}, \omega)}{\arg \max} \mathcal{L}_{CE}(f_{\theta}(\Phi(\mathcal{X}_{k,i}), \mathcal{Y}_{k,i})_{i=1}^{\nu}),$$

where \mathcal{L}_{CE} and f_{θ} represent the cross-entropy loss function and parameters of the local black-box model, respectively.

Table 1. Global test accuracy (AG%) ↑ without data poisoning in uniform and non-IID FL settings, with and without FAVD data valuation. "No Val" refers to FL without data valuation.

$\mathbf{Dataset} \rightarrow$		C-xray	Cam17	HAM10K	CIFAR10	CIFAR100
		[11]	[3]	[49]	[24]	[24]
Shard ↓	FL setting \rightarrow	n = 4,	n = 5,	n = 64,	n = 100,	$n = 10^3$,
	$\mathbf{Method} \downarrow$	k = 4	k = 5	k = 64	k = 70	k = 500
Uniform	No Val	91.37±1.54	$91.82{\scriptstyle\pm1.21}$	73.61±1.59	$85.59{\scriptstyle\pm0.76}$	$78.45{\scriptstyle\pm0.81}$
Cilioriii	FAVD	93.75±1.20	94.62±1.15	$75.48{\scriptstyle\pm0.42}$	88.42±0.21	81.19±0.45
	(ours)					
non-IID	No Val	$88.62{\scriptstyle\pm1.27}$	$87.81{\scriptstyle\pm1.79}$	$68.79{\scriptstyle\pm0.83}$	$82.93{\scriptstyle\pm1.18}$	$73.56{\scriptstyle\pm1.74}$
	FAVD	91.36±1.31	91.38±1.86	$71.36{\scriptstyle\pm0.86}$	$86.24{\scriptstyle\pm1.22}$	$76.38{\scriptstyle\pm1.83}$
	(ours)					

Result Discussion

- **Higher accuracy in no-threat:** FAVD improves accuracy by 2-3% (uniform) and 3-4% (non-IID) by discarding misaligned data.
- Resilient to poisoning attacks: Limits accuracy drop to 3-7% (uniform) and 8-10% (in highly non-IID settings).
- Superior data valuation: Achieves highest MSDR (0.90) and BMR (0.86), surpassing other methods.
- Better client contribution consistency (CCC): Maintains high CCC (~1), ensuring verifiable contributions even under threats.

Limitations and Future Work

- Benign data exploitation: Enhance feature alignment, explore encryption & secure multi party computation protocols.
- Adaptive attack evasion: Add behavioral analysis & temporal consistency checks.

Summary and Conclusion

FAVD enhances auditability, verifiability, and privacy in FL by leveraging local and global density functions for precise data valuation. Extensive evaluations show superior performance over state-of-the-art methods across diverse datasets.

References

K. Naveen Kumar, et al., "The Impact of Adversarial Attacks on Federated Learning: A Survey," *IEEE TPAMI*, **2024**.