

1.Introduction

· Why WSI:

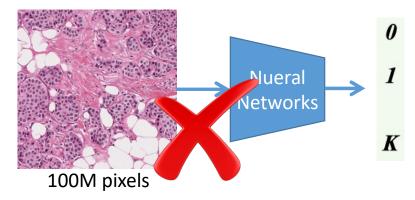
Histological Whole Slide Image (WSI) classification is essential in digital pathology, automating diagnosis and sub-typing while extracting insights from high-resolution scansto support prognosis and treatment planning

Features:

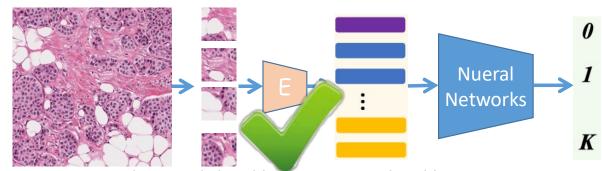
WSIs, with sizes ranging from 100 million to 10 billion pixels, are too large for conventional deep learning techniques, which were originally designed for much smaller natural or medical images.

Strategy:

"decompose and aggregate", A promising application of this strategy is Multiple Instance Learning(MIL), which treats each WSI as a bag containing smaller image patches.



Traditional solutions



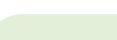
100M pixels patch-level bag instance-level bag

Multiple Instance Learning(MIL)

1.Introduction

Motivation

A significant issue is **data imbalance:** within a bag, positive instances (e.g., those containing can-cerous cells) are often vastly outnumbered by negative ones. This imbalance can bias the model toward the majority class, leading it to overlook or misclassify important minority instances and resulting in poor sensitivity for detecting rare but clinically significant features.



Solution

Mixture-of-Experts (MoE): which intelligently routes instances to specialized experts based on their relevance and characteristics. This dynamic routing mechanism ensures focused attention on minority classes, enhancing sensitivity to rare but clinically significant instances and reducing bias toward the majority class.

The current shortcomings of **feature integration methods:** These methods are still limited by the influence of noise and irrelevant patches, as they fundamentally rely on discriminative feature integration paradigms that are inherently susceptible to such interference.

Diffusion Classifier: leverages the expert and prior knowledge extracted by Dyn-MoE through a customized diffusion process, supported by a multi-layer perceptron (MLP) network. This integration of expert driven insights with the generative capabilities of the diffusion model

1.Introduction

Overall, the contributions of this work can be summarized as:

- ◆ A new paradigm for WSI classification. MExD is the first to apply generative techniques for WSI classification, offering a novel solution to data imbalance, noise reduction, and feature integration, and laying the foundation forfuture research.
- ◆ A novel diffusion model fused with the MoE approach. We introduce a novel diffusion model seamlessly integrated with Mixture-of-Experts(MoE), which, unlikestandard diffusion models, incorporates experts focusedon specific instances, thereby more effectively addressing the inherent challenges of WSI analysis.
- ◆ State-of-the-art results on widely-used benchmarks. MExD demonstrates exceptional performance in accurately classifying WSI, setting new standards on prominent benchmarks such as Camelyonl6,TCGA-NSCLC and BRACS.

Problem Reformulation:

A WSI (X) is divided into a patch-wise bag **B** of N patches $\{x_i\}^N$, with only a bag-level label Y . For binary classification, Y = 1 indicates at least one positive instance, while Y = 0 indicates none. In multi-label tasks, Y corresponds to the specific cancer subtype, with eachWSI containing only one type.

MIL paradigm:

- 1) Patch Embedding: Extractor $f(\cdot)$ transforms patches $\{x_i\}^N$ into embeddings $\{b_i\}^N$ forming instance-wise bag B;
- 2) Feature Aggregation: Aggregator g(·) combines embeddings;
- 3) WSI Classification: Classifier $c(\cdot)$ predicts the label Y:= $c(g(\{f(x_i)\}^N))$. In some methods, the classifier $c(\cdot)$ is incorporated into $g(\cdot)$.

MEXD:

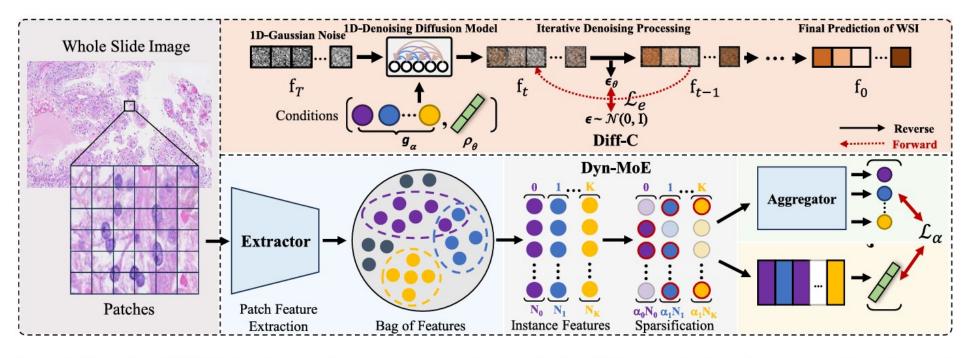


Figure 2. **Overview of MExD**. Our framework leverages a generative classification diffusion model for enhanced reliability and generalizability, where g_{α} and ρ_{θ} encode expert insights and prior knowledge, conditioning Diff-C (see Sec. 3.2 for details).

Fig. 2 presents an overview of our MExD, which integrates a Patch Feature Extractor, a Dyn-MoE Aggregator leveraging the Mixture-of-Experts mechanism, and a Diffusion Classifier (Diff-C) built on the principles of the Denoising Diffusion Probabilistic Model.

Dyn-MOE:

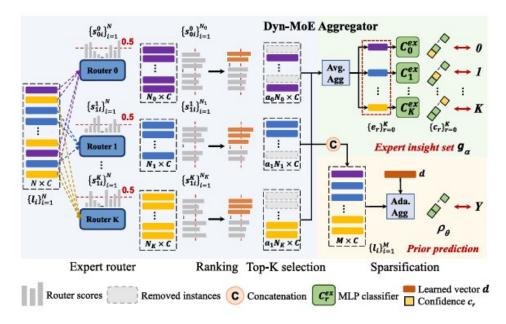


Figure 3. **Details of Dyn-MoE Aggregator**. Our Dyn-MoE includes K *positive* experts and 1 *negative* expert, producing expert insights set (g_{α}) and prior prediction (ρ_{θ}) to work alongside Diff-C. 'Avg.' and 'Ada.' indicate mean-pooling and Adapter. *Zoom in for details*.

WorkFlow:

- Patch Feature Extractor. Given a patch-wise $bag \ \breve{B} = \{x_i\}_{i=1}^N$, the Patch Feature Extractor, similar to conventional discriminative methods, encodes each patch to generate high-order instance features $\{b_i\}_{i=1}^N$, which are then fed into the aggregation stage.
- Dyn-MoE Aggregator. The Dyn-MoE Aggregator receives $\{b_i\}_{i=1}^N$ as input and dynamically samples the most representative instances using a tailored MoE mechanism, yielding a sparse set of transformed instances $\{l_i\}_{i=1}^M$, where $M<\frac{N}{2}$. It then learns the concatenation $[\{l_i\}_{i=1}^M,d]$ to produce prior prediction ρ_{θ} , which captures the relationship between the WSI (X) and the bag-level label (Y), with d as a learnable class embedding. Meanwhile, each expert sub-branch generates a class-centric latent feature e and confidence e, forming the expert insights set e0 and e1 and e2.
- **Diffusion Classifier.** Our Diff-C utilizes a modified forward diffusion process, incorporating prior prediction ρ_{θ} as a predicted conditional expectation, along with a multilayer perceptron (MLP) serving as a noise prediction network conditioned on the expert insights set g_{α} , to directly predict the final result \hat{Y} .

Forward Diffusion

(a) Forward Diffusion with ρ_{θ} . Forward diffusion generates a series of noised samples y_t at timestamps t from the initial signal y_0 , following a Markov process as shown in the first line of Eq. 5. As t increases from 1 to T, y_t can also be derived directly from y_0 using the second line of Eq. 5:

$$q(\boldsymbol{y}_{t}|\boldsymbol{y}_{t-1}) = \mathcal{N}(\boldsymbol{y}_{t}; \tilde{\beta}_{t}\boldsymbol{y}_{t-1}, \beta_{t}\mathbf{I}),$$

$$q(\boldsymbol{y}_{t}|\boldsymbol{y}_{0}) = \mathcal{N}(\boldsymbol{y}_{t}; \sqrt{\overline{\alpha}_{t}}\boldsymbol{y}_{0}, (1 - \overline{\alpha}_{t})\mathbf{I}).$$
(5)

Here, β_t is the variance of the Gaussian noise at each step t, with $\tilde{\beta}_t = \sqrt{1-\beta_t}$, $\overline{\alpha}_t = \prod_{j=1}^t \alpha_j$, and $\alpha_j = 1-\beta_j$. As $\overline{\alpha}_T \to 0$ at the maximum timestamp T, the endpoint of FD, y_T becomes pure Gaussian noise. Inspired by CARD [16], we assume the one-hot encoded label f_0 with ρ_θ as the predicted conditional expectation, infusing it into FD to specify conditional distributions in Eq. 6 (top), allowing closed-form sampling at any timestamp t in Eq. 6 (bottom):

$$q(\mathbf{f}_{t}|\mathbf{f}_{t-1},\boldsymbol{\rho}_{\theta}) = \mathcal{N}(\mathbf{f}_{t};\tilde{\beta}_{t}\mathbf{f}_{t-1} + (1 - \tilde{\beta}_{t})\boldsymbol{\rho}_{\theta}, \ \beta_{t}\mathbf{I}),$$

$$q(\mathbf{f}_{t}|\mathbf{f}_{0},\boldsymbol{\rho}_{\theta}) = \mathcal{N}(\mathbf{f}_{t};\sqrt{\overline{\alpha}_{t}}\mathbf{f}_{0} + (1 - \sqrt{\overline{\alpha}_{t}})\boldsymbol{\rho}_{\theta}, (1 - \overline{\alpha}_{t})\mathbf{I}).$$
(6)

Intuitively, in MExD, the endpoint of FD is the prior prediction ρ_{θ} .

Reverse Denoising:

(b) Reverse Denoising with g_{α} . Diff-C uses a denoising network \mathcal{D} , implemented as a three-layer MLP, to predict the added noise ϵ_t . It receives expert insights set g_{α} and an initial noise input $\mathbf{f}_T \sim \mathcal{N}(\rho_{\theta}, \mathbf{I})$. First, we compute a weighted average of all e values in g_{α} using their corresponding confidences e, which is fed into an encoder with three linear layers to produce the conditioned latent e0 e1. The denoising network iteratively estimates the intermediate noise e_{θ} , refining e1 to e1 following the FD posterior from CARD [16], until the reconstructed output e1 is obtained:

$$q(\mathbf{f}_{t-1}|\mathbf{f}_t, \mathbf{f}_0, \boldsymbol{\rho}_{\theta}) = \mathcal{N}(\mathbf{f}_{t-1}; \boldsymbol{\mu}(\mathbf{f}_t, \mathbf{f}_0, \boldsymbol{\rho}_{\theta}), \hat{\beta}_t \mathbf{I}). \tag{7}$$

Based on Eq. 7, the entire process can be mathematically defined as follows:

$$Z = \sum_{r=0}^{k} (\boldsymbol{c}_r \cdot \boldsymbol{e}_r), \quad \boldsymbol{\epsilon}_{\theta} = \mathcal{D}(\boldsymbol{Z}, \mathbf{f}_t, \boldsymbol{\rho}_{\theta}, \boldsymbol{t}),$$

$$\hat{\mathbf{f}}_0 = \frac{1}{\sqrt{\overline{\alpha}_t}} (\mathbf{f}_t - (1 - \sqrt{\overline{\alpha}_t}) \boldsymbol{\rho}_{\theta} - (1 - \sqrt{\overline{\alpha}_t}) \boldsymbol{\epsilon}_{\theta}),$$

$$\mathbf{f}_{t-1} = \gamma_0 \hat{\mathbf{f}}_0 + \gamma_1 \mathbf{f}_t + \gamma_2 \boldsymbol{\rho}_{\theta} + \gamma_3 \boldsymbol{z}.$$
(8)

Here, z is a standard Gaussian noise. γ_0 , γ_1 , γ_2 and γ_3 are associated with parameters α and β^1 . In the context of the reverse denoising process, as formalized in Eq. 8, the Diff-C progressively refines the noisy prediction through an iterative sequence, i.e., $\mathbf{f}_T \to \mathbf{f}_{T-\Delta} \to \cdots \mathbf{f}_0$.

3. Quantitative Results

Table 1. Quantitative Comparison of Our Results and State-of-the-Art Methods on CAMELYON16, TCGA-NSCLC, and BRACS datasets. All models are retrained under their recommended settings for fairness, except for PAMIL [54], whose results are directly cited. The best performance is in **bold**, and the second best is <u>underlined</u>.

Method	Camelyon16			TCGA-NSCLC			BRACS						
	F1-score	ACC	AUC	F1-score	ACC	AUC	F1-score	ACC	AUC				
CTransPath pre-trained with SRCL													
ABMIL [19]	89.81±0.69	90.70±0.63	92.41±0.78	89.67±0.81	89.71±0.80	95.87±0.57	62.54±1.16	68.29±0.86	80.44±0.80				
DSMIL [23]	88.84 ± 0.73	89.73 ± 0.74	92.05 ± 1.17	90.65 ± 0.73	90.67 ± 0.72	96.40 ± 0.53	69.73 ± 1.82	72.82 ± 1.06	86.70 ± 0.43				
CLAM-SB [30]	90.47 ± 0.62	91.32 ± 0.65	93.55 ± 0.86	94.17 ± 1.07	94.37 ± 1.06	96.90 ± 0.74	68.37 ± 1.57	69.65±1.29	84.04 ± 0.61				
CLAM-MB [30]	91.20 ± 0.75	91.94 ± 0.69	93.63 ± 0.38	93.04 ± 0.71	93.05 ± 0.73	97.13 ± 0.47	67.61 ± 2.14	69.18 ± 1.53	80.78 ± 1.30				
TransMIL [38]	93.69 ± 0.56	94.19 ± 0.44	95.03 ± 0.67	90.94 ± 0.88	90.95 ± 0.89	95.89 ± 0.23	70.17 ± 1.80	72.00 ± 1.29	85.18 ± 0.56				
DTFD-MIL [50]	94.80 ± 0.39	95.16 ± 0.29	96.82 ± 0.58	88.31 ± 0.31	88.38 ± 0.26	94.98 ± 0.76	68.98 ± 3.02	72.00 ± 1.75	83.57±1.18				
MHIM-MIL [42]	94.67 ± 0.68	94.99 ± 0.76	96.14 ± 0.55	91.34 ± 0.81	91.68 ± 0.49	96.73 ± 0.65	72.41 ± 1.63	73.26 ± 0.96	84.79 ± 0.82				
MambaMIL [47]	93.98 ± 0.71	94.42 ± 0.65	96.06 ± 0.78	94.23 ± 0.72	94.48 ± 0.64	97.16 ± 0.40	68.37 ± 0.84	70.59 ± 0.83	83.39 ± 1.01				
ACMIL [52]	93.80 ± 0.32	93.99 ± 0.38	94.85 ± 0.72	94.08 ± 1.01	94.10 ± 0.98	96.80 ± 0.76	72.88 ± 1.07	74.35 ± 0.52	85.70 ± 0.73				
IBMIL [28]	95.02 ± 0.65	95.35 ± 0.63	96.41 ± 1.13	93.52 ± 0.32	93.62 ± 0.26	97.45±0.53	70.93 ± 0.95	72.94 ± 0.83	85.84 ± 0.71				
WiKG [26]	90.62 ± 1.20	91.28 ± 0.97	92.73 ± 1.82	93.23 ± 0.53	93.24 ± 0.52	95.95 ± 1.24	69.00 ± 0.60	71.06 ± 0.64	84.19±0.59				
PAMIL* [54]	96.10 ± 0.60	94.70 ± 0.90	97.70 ± 2.60	‡	‡	‡	‡	‡	‡				
MExD	97.29±0.41	97.48 ± 0.37	98.87±0.43	96.51±0.29	96.53±0.23	98.13 ± 0.17	75.17 ± 0.42	76.13 ± 0.58	88.08±0.26				
ViT pre-trained with MoCo V3													
ABMIL [19]	85.04±1.06	87.02±0.74	84.29±0.98	88.41±0.32	88.57±0.34	92.49±0.46	52.39±0.47	67.77±0.65	78.43±0.30				
DSMIL [23]	78.82 ± 0.65	81.20 ± 0.97	82.64 ± 1.43	90.23 ± 0.85	90.09 ± 0.78	95.83 ± 0.25	54.01 ± 0.92	63.77 ± 0.99	80.07 ± 0.83				
CLAM-SB [30]	90.32 ± 0.95	91.16 ± 0.88	95.15 ± 0.71	94.38 ± 0.53	94.38 ± 0.52	96.93 ± 0.23	69.67 ± 1.54	71.76 ± 1.66	83.22±0.42				
CLAM-MB [30]	87.78 ± 1.34	88.99 ± 1.15	96.64 ± 1.18	93.70 ± 1.04	93.72 ± 1.01	97.35 ± 0.50	71.46 ± 2.79	73.65 ± 1.78	79.82 ± 2.14				
TransMIL [38]	93.33 ± 0.60	93.80 ± 0.63	95.05 ± 0.44	93.51 ± 0.71	93.62 ± 0.72	96.40 ± 0.41	74.04 ± 0.31	74.82 ± 0.64	87.15±0.39				
DTFD-MIL [50]	89.98 ± 1.30	90.89 ± 1.16	93.05 ± 0.27	89.67 ± 1.05	89.72 ± 1.04	94.60 ± 0.73	49.93 ± 2.48	62.35 ± 1.44	83.22 ± 0.63				
MHIM-MIL [42]	93.24 ± 1.40	93.70 ± 0.77	97.20 ± 0.60	90.48 ± 1.50	92.17 ± 0.81	94.95 ± 0.53	62.76 ± 1.31	71.28 ± 1.26	86.20 ± 0.69				
MambaMIL [47]	93.73 ± 0.86	94.11 ± 0.88	97.28 ± 0.51	94.68 ± 0.35	94.76 ± 0.33	97.76 ± 0.36	61.63 ± 2.48	69.88 ± 1.05	85.62 ± 0.84				
ACMIL [52]	86.69 ± 0.72	87.75±0.65	89.44 ± 0.42	95.09 ± 0.79	95.33 ± 0.52	97.74 ± 0.20	71.25 ± 0.88	74.59 ± 1.05	84.64 ± 0.49				
IBMIL [28]	92.68 ± 1.06	93.33 ± 0.88	94.37 ± 0.71	94.23 ± 0.43	94.29 ± 0.34	97.46 ± 0.39	74.74 ± 0.61	75.53 ± 0.98	86.57±0.27				
WiKG [26]	86.28 ± 0.96	87.60 ± 0.55	90.06 ± 1.45	92.73 ± 0.87	92.76 ± 0.85	97.52 ± 0.44	63.99 ± 2.15	66.83 ± 1.54	82.52±0.88				
MExD	96.49±0.38	96.74±0.34	98.00 ± 0.16	95.87 ± 0.25	95.87 ± 0.24	98.27 ± 0.32	80.10 ± 0.48	81.01 ± 0.45	88.61±0.42				

1.MExD achieves leading performance across all metrics and datasets, setting new benchmarks.

Table 2. **Quantitative Uncertainty Assessment** using PAvPU (α -value=0.05) [34], conducted via hypothesis testing with CTransPath [44] as f_{PFR} .

36.4.1	Came	lyon16	TCGA-	-NSCLC	BRACS	
Method	ACC	PAvPU	ACC	PAvPU	ACC	PAvPU
ACMIL[52]	94.57	93.80	94.29	93.81	74.12	76.47
IBMIL [28]	94.57	93.02	93.81	94.29	74.12	75.29
TransMIL [38]	94.57	94.57	91.90	91.90	72.94	72.94
MambaMIL [47]	95.35	95.35	94.76	94.76	71.76	71.76
MExD	97.67	98.45	96.67	97.62	76.47	81.18

2.MExD shows full certainty in correct predictions and uncertainty in some incorrect ones

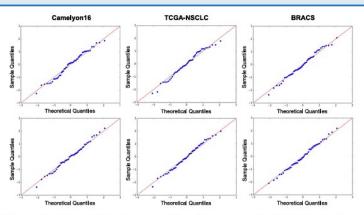


Figure 5. **Normality Assumption Assessment:** Q-Q plots showing the probability difference between the top two predicted classes within a *bag*, with two *bags* selected from each benchmark for visualization.

3. Qualitative Interpretability

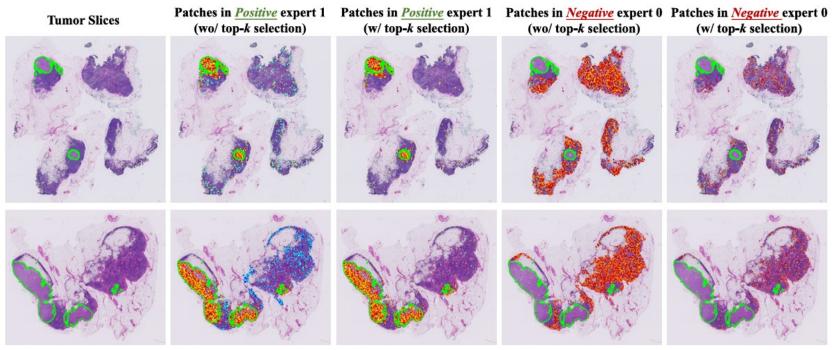
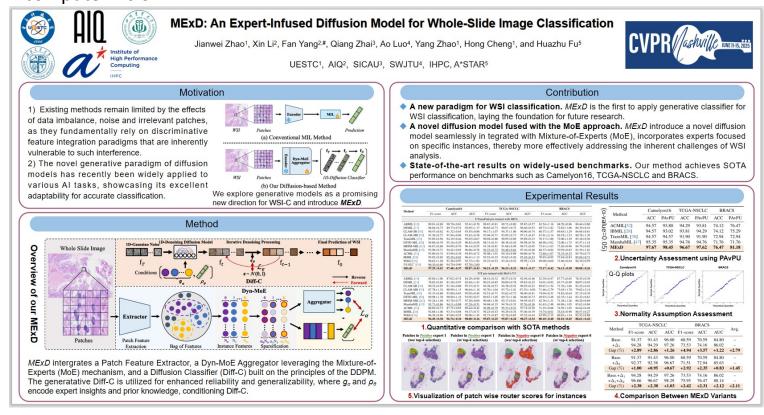


Figure 4. **Distribution Visualization** of patch-wise router scores for *positive* instances, where each score corresponds to a selected patch. In column 2, expert 1 effectively identifies *positive* patches, then refines and retains the most representative ones (column 3) through scorebased selection. Concurrently, expert 0 focuses on refining *negative* instances. The green edges indicate cancerous region.

In column 2, router scores from our positive expert1 are mapped onto the WSI, and patches without scores are excluded. Expert 1 identifies positive patches effectively, despite some negative interference, achieving instance sparsity. Notably, true positive patches receive higher scores, while false positives are scored lower. Column 3 demonstrates score-based refinement, where only higher-scoring patches are retained.

4.Conclusion

In this work, we introduce MExD, a novel WSI classification framework that combines a conditional generative approach with Mixture-of-Experts (MoE). MExD includes a Dyn-MoE aggregator that dynamically selects relevant instances, addressing data imbalance and improving representation. Additionally, its generative Diff-C iteratively denoises Gaussian noise using expert insights and prior predictions, resulting in stable outcomes. This blend of MoE and generative classification offers a promising new approach to WSI classification with broader applications incomputer vision.



Poster

ExHall D Poster #474

Sat 14 Jun 5 p.m. − 7 p.m. CDT

Thanks for your watching!