

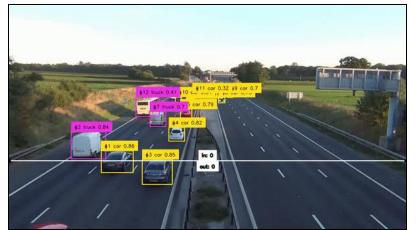
CholecTrack20

A Multi-Perspective Tracking Dataset for Surgical Tools

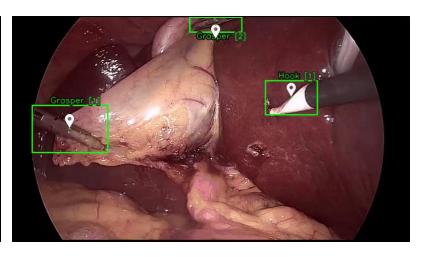
Fauzan Zaid¹ Joel Lavanchy²

Nicolas Padoy^{1,3}

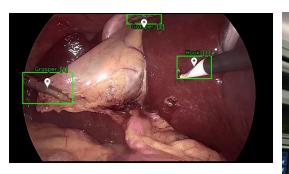
³ IHU Strasbourg, France



¹ University of Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France


² University of Basel, University Digestive Health Care Center, Clarunis, Switzerland

Surgical Tool Tracking



- Object tracking estimates object location across time
- It enables perception, understanding, action, and analysis.

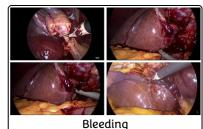
Surgical tool tracking is central to modeling surgical workflows and automation.

Surgical Tool Tracking

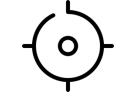
Why track surgical tool?

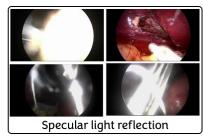
decision support assessment navigation
surgical safety risk zone estimation
laparoscope positioning robotic visual servoing
insights virtual and augmented reality

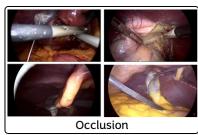
- Object tracking estimates object location across time
- It enables perception, understanding, action, and analysis.

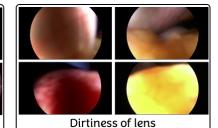

Surgical tool tracking is central to modeling surgical workflows and automation.

Surgical Tool Tracking is Uniquely Challenging







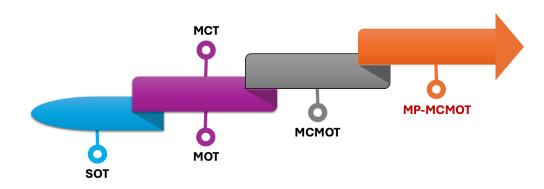


Surgical scene is dynamic and constrained

Occlusion is frequent – tissue blocks and deformable, 2D monocular view

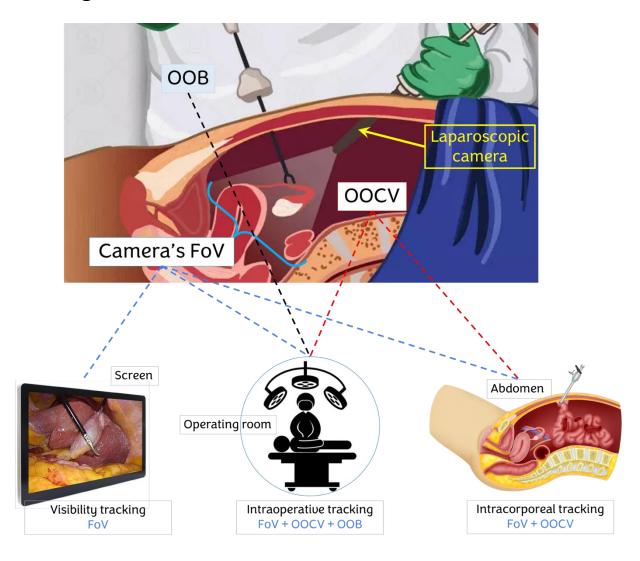
Tools follow non-rigid, disappearing trajectories

Tools go out-of-camera view, out-of-body and later reappear


Multiple tools are visually similar and used simultaneously

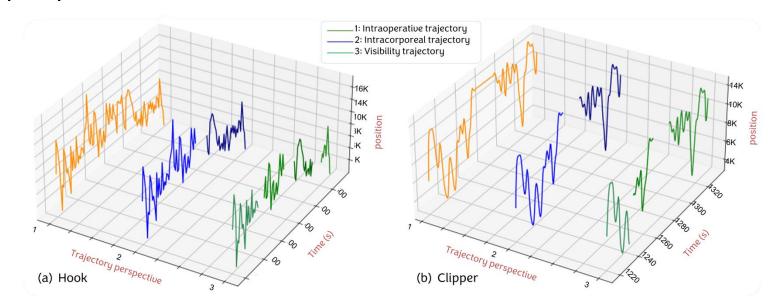
Tool's appearance can change by stains from blood, fluid, or light reflection

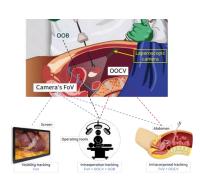
Beyond MOT: Towards Multi-Perspective Tracking (MP-MCMOT)



Existing tracking fail to capture the complexity of surgical scene.

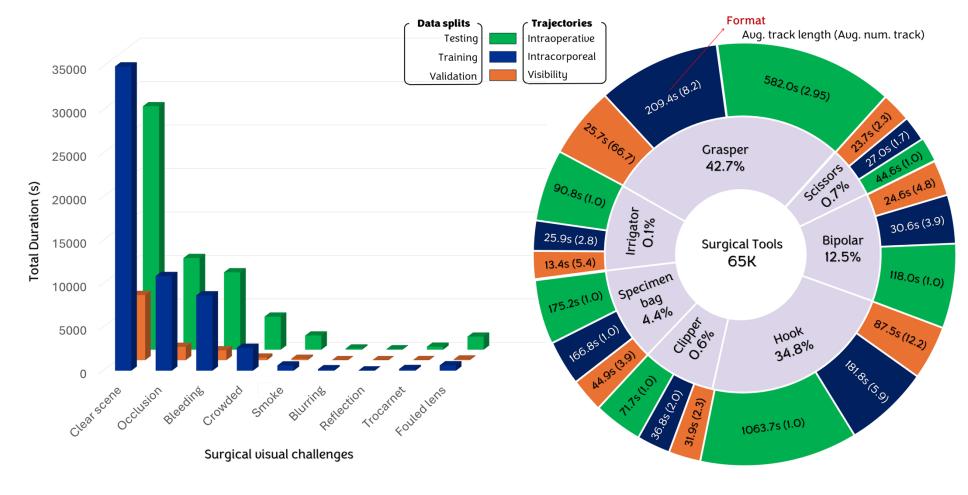
Tools move across views:


- operating room / out-of-body
- abdomen / within-the-body
- camera field of view / on-screen
- > track identity becomes ambiguous.



Beyond MOT: Towards Multi-Perspective Tracking (MPT)

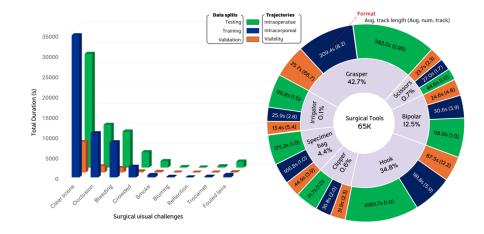
- **Multi-perspective tracking** paradigm:
 - redefines tracking as perspective-aware trajectories.
 - 3 tracking perspectives:

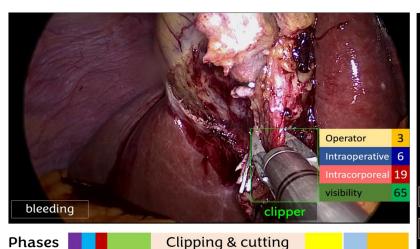

intraoperative	tool life-long usage timeline									
200	intracorporeal	intracorporeal tool inside the body timeline								
		visibility	tool in camera focus timeline							

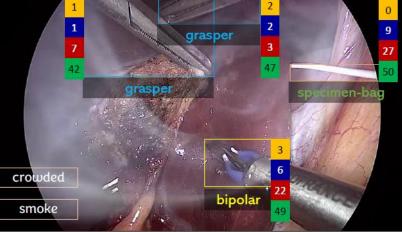
Introducing CholecTrack20 Dataset . . .

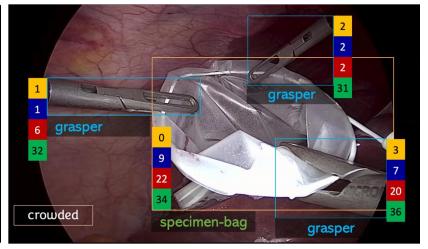
- > First multi-perspective surgical tracking dataset
- ≥ 20 videos → 35K frames → 65K tool instances

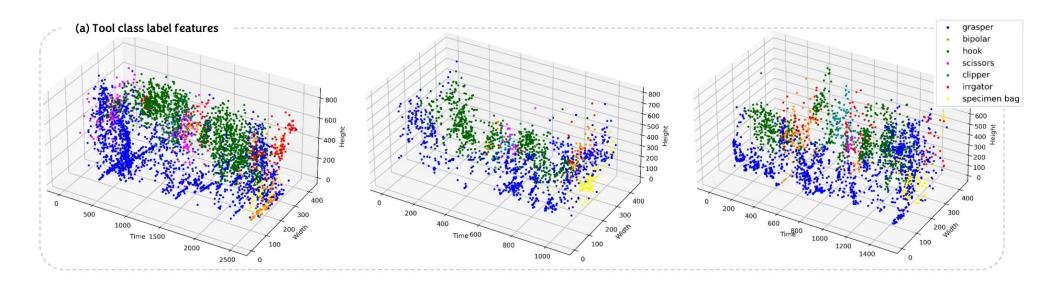
Introducing CholecTrack20 Dataset . . .

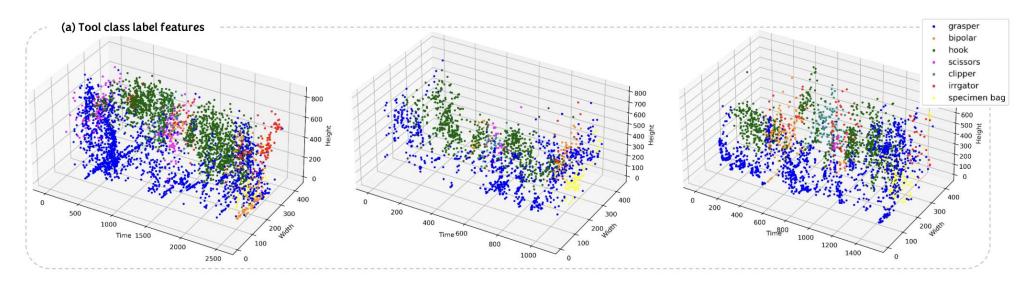


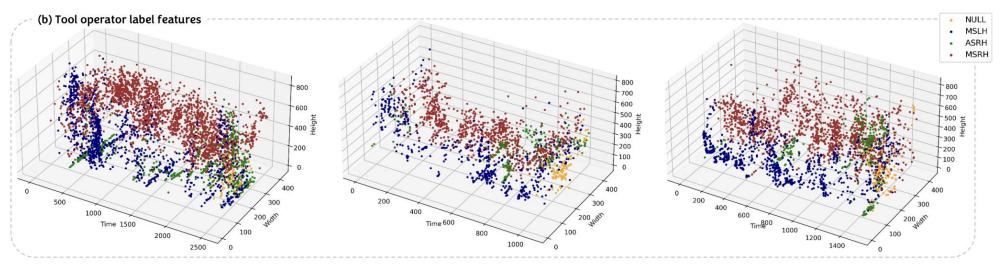

- > First multi-perspective surgical tracking dataset
- ≥ 20 videos → 35K frames → 65K tool instances


Annotations include:

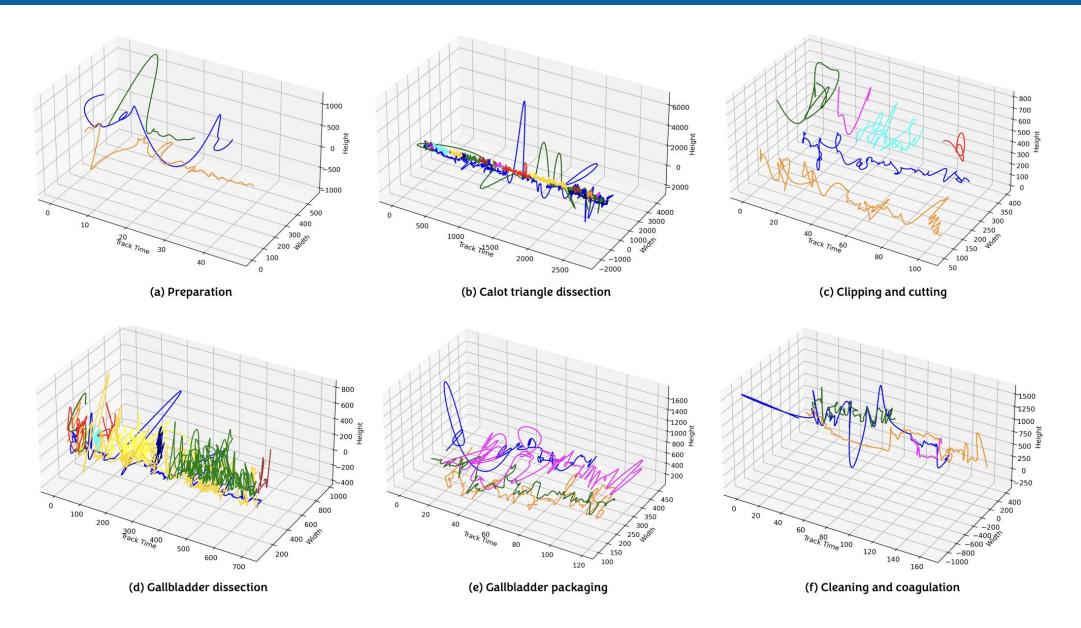

- Spatial locations (bounding boxes)
- Tool categories
- Tool identity across 3 perspectives
- Surgeon operating hand identities
- Surgical phases
- Visual challenges (e.g. smoke, bleeding, ...)

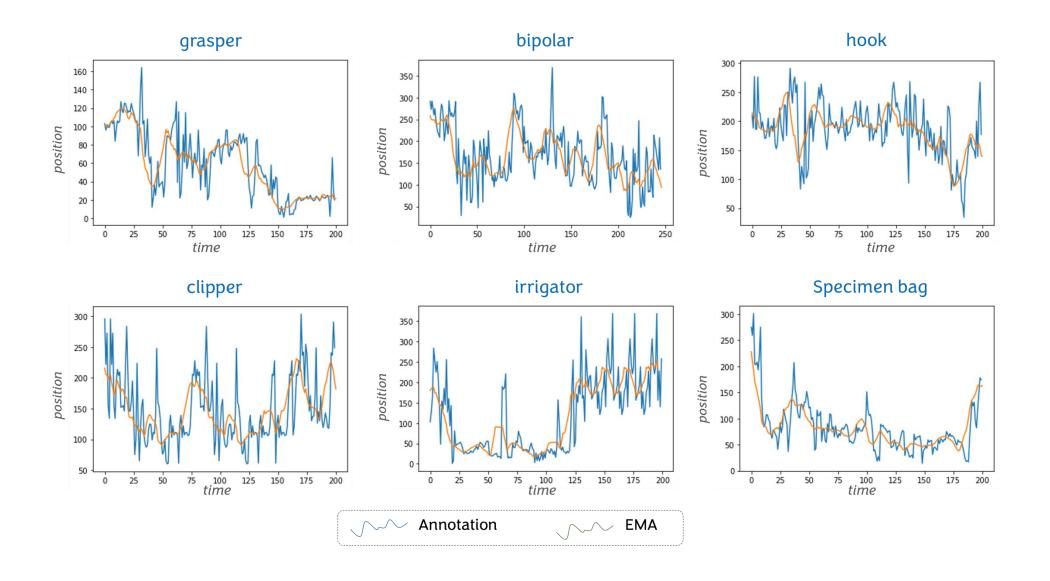



Label Analysis

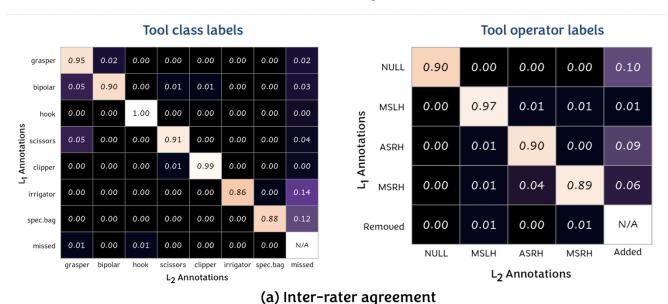


Label Analysis

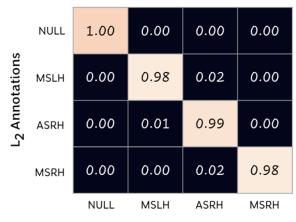



Label Analysis

Annotation Quality Assurance



Annotation Quality Assurance


Tool class labels Tool operator labels 0.00 0.00 0.01 0.00 0.00 0.00 grasper 0.00 NULL 0.89 0.01 0.03 0.07 0.00 0.00 0.00 0.00 0.01 bipolar 0.01 0.04 0.00 0.95 0.01 0.00 **MSLH** 0.00 0.00 0.00 0.96 0.00 0.00 0.00 hook L₁ Annotations 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.01 0.93 0.00 0.06 0.00 **ASRH** 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.04 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.08 irrigator 0.00 0.00 0.00 0.00 0.00 0.07 0.01 0.92 0.00 0.00 0.01 0.01 Add / Remove 0.01 0.00 0.01 0.01 0.00 0.00 0.00 N/A Add / NULL MSLH ASRH **MSRH** Remove grasper bipolar hook scissors clipper irrigator spec.bag L₂ Annotations L₂ Annotations

(a) Inter-rater agreement

Inter-rater Intra-rater Bounding Box Jaccard Index 99.4 91.8 Tool Class Cohen's Kappa 94.6 95.2 Tool Operator Cohen's Kappa 94.0 92.7

Tool operator labels

Mediated Labels

(c) Mediation agreement

Nwoye C. I. et al

N/A

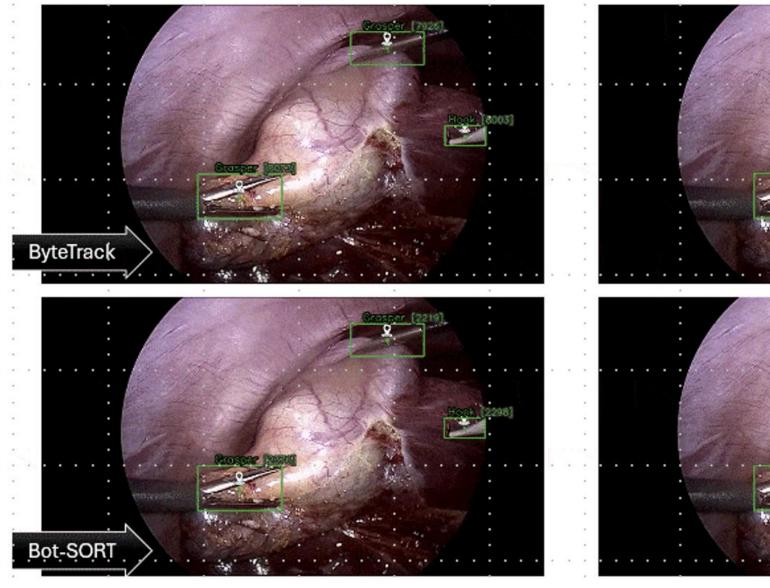
Add/

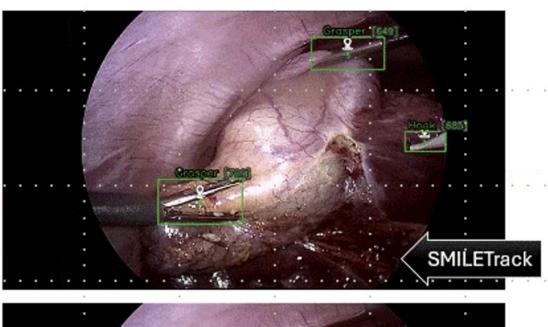
Benchmarking SOTA Models

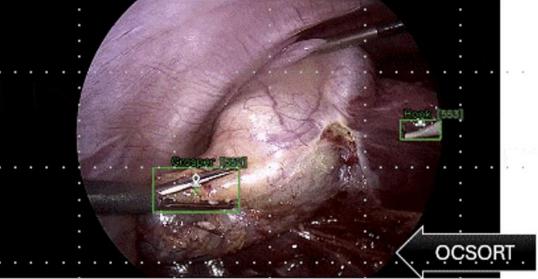
• 13 object detectors

Detector Model	Detection AP accross 3 thresholds			Detection AP per category. (% AP @ $\Theta = 0.5$)							Detection AP across surgical visual challenges								Speed
	$\overline{AP_{0.5}\uparrow}$	$AP_{0.75}\uparrow$	$AP_{0.5:0.95} \uparrow$	Grasper	Bipolar	Hook	Scissors	Clipper	Irrigato	r Bag	Bleeding	g Blur	Smoke	Crowded	Occluded	Reflection	Foul Lens	Trocar	FPS↑
Faster-RCNN [43]	56.0	38.1	34.6	53.5	65.0	80.1	60.9	70.1	26.8	31.8	57.9	41.0	54.5	43.5	55.0	46.9	41.2	35.7	7.6
Cascade-RCNN [7]	51.7	39.0	34.7	52.0	58.9	79.7	45.7	44.9	23.7	17.9	53.9	39.0	48.1	39.5	46.4	29.1	33.7	33.7	7.0
CenterNet [69]	53.0	39.5	35.0	60.2	61.4	86.4	56.3	68.0	25.8	10.2	58.0	42.1	50.2	36.7	51.7	46.0	35.8	30.8	33.8
FCOS [54]	43.5	31.5	28.1	51.2	44.3	74.7	49.2	54.2	21.9	7.2	47.8	40.6	51.5	15.1	40.8	42.7	29.7	17.6	7.7
SSD [30]	61.9	37.8	36.1	75.2	62.2	91.6	63.4	72.9	22.5	40.8	64.5	49.3	58.3	57.5	62.4	53.9	47.7	42.6	30.9
PAA [23]	64.5	44.9	41.1	69.6	79.0	89.2	68.7	74.2	37.6	28.9	67.1	55.6	65.0	55.0	64.6	56.0	51.2	47.5	8.5
Def-DETR [71]	58.4	42.0	38.3	60.6	66.5	83.8	61.9	72.0	39.9	23.8	62.4	42.7	58.6	37.1	57.4	43.9	41.5	47.4	10.2
Swin-T [31]	62.3	44.3	40.2	63.3	64.8	83.0	80.2	77.2	38.0	26.8	63.5	53.8	62.8	35.3	61.1	66.2	55.2	45.7	9.8
YOLOX [19]	64.7	48.9	44.2	69.6	72.2	89.4	75.4	79.1	37.3	27.1	68.2	55.6	66.0	45.9	64.2	52.5	58.1	43.1	23.6
YOLOv7 [62]	80.6	62.0	56.1	90.5	86.4	96.0	82.3	89.3	49.1	66.2	80.2	61.2	80.1	79.5	82.1	65.6	71.2	66.7	20.6
YOLOv8 [58]	79.1	62.4	55.6	87.9	84.5	96.2	80.0	87.2	48.4	65.0	77.1	58.3	74.4	76.2	80.4	70.3	57.4	62.9	29.0
YOLOv9 [61]	80.2	62.6	56.5	88.5	87.6	96.0	79.3	87.1	50.1	67.7	78.1	54.0	78.2	78.6	81.1	65.3	63.4	63.1	23.7
YOLOv10 [60]	80.1	62.1	55.8	87.6	86.6	96.0	81.9	89.0	53.8	61.3	77.8	61.9	78.7	77.5	81.2	66.7	59.3	65.4	28.6

Benchmarking SOTA Models

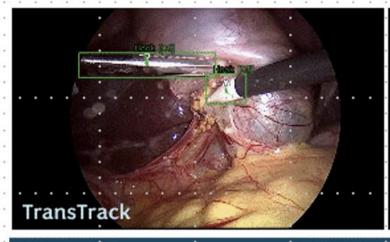


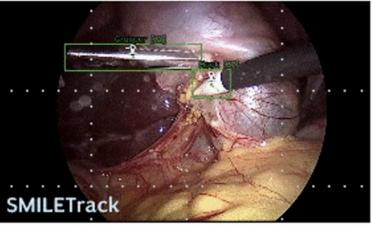

• 8 object trackers

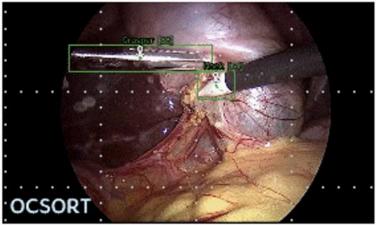

Model	HOTA Metrics					cs		Ide	ntity Met	rics	Count 1	Count Metrics			
Tracker	НОТА↑	DetA↑	LocA [†]	AssA↑	MOTA↑	MOTP↑	MT↑	PT↓	ML↓	IDF1↑	IDSW↓	Frag↓	#Dets	#IDs	FPS↑
				Intraop	perative Traje	ectory (Gr	oundtr	uth co	ounts: #1	Dets = 2999	94, #IDs =	= 70)			
OCSORT [33]	14.6	52.7	86.7	4.1	49.2	85.0	24	32	14	9.5	2921	2731	21936	3336	10.2
FairMOT [66]	5.8	25.8	75.9	1.3	5.0	73.9	3	24	43	4.3	4227	1924	15252	4456	14.2
TransTrack [50]	7.4	31.5	84.4	1.7	4.2	82.9	9	36	25	4.2	4757	1899	21640	4079	6.7
ByteTrack [67]	15.8	70.6	85.7	3.6	67.0	84.0	54	12	2	9.5	4648	2429	28440	5383	16.4
Bot-SORT [1]	17.4	70.7	85.4	4.4	69.6	83.7	58	11	1	10.2	3907	2376	29302	4501	8.7
SMILETrack [63]	15.9	71.0	85.5	3.7	66.4	83.8	55	13	2	9.2	4968	2369	28821	5761	11.2
				Intraco	rporeal Traje	ctory (Gre	oundtri	uth co	unts: #L	Dets = 2999	4, #IDs =	: 247)			
OCSORT [33]	23.7	51.4	86.5	11.0	47.1	84.8	115	87	45	18.1	2953	2796	21797	3526	10.2
FairMOT [66]	7.5	19.7	76.1	2.9	5.4	74.0	19	60	168	6.0	2890	1496	11287	3962	14.2
TransTrack [50]	13.1	31.5	84.4	5.5	4.6	82.9	80	79	88	8.7	4648	1791	21640	4079	6.7
ByteTrack [67]	24.7	70.6	85.7	8.7	67.4	84.0	176	48	23	16.9	4515	2290	28440	5383	16.4
Bot-SORT [1]	27.0	70.7	85.4	10.4	70.0	83.7	188	38	21	18.9	3771	2238	29300	4501	8.7
SMILETrack [63]	24.9	66.7	85.5	8.9	66.7	83.8	186	39	22	16.9	4868	2232	28820	5779	11.2
				Visib	ility Trajecto	ry (Groun	dtruth	count	s: #Dets	s = 29994, i	#IDs = 9	16)			
SORT [4]	17.4	39.5	85.2	7.8	21.4	83.3	139	399	378	13.4	6619	2138	16595	8844	19.5
OCSORT [33]	37.0	52.6	86.5	26.2	50.2	84.8	300	371	245	35.9	2317	2260	22197	3587	10.2
FairMOT [66]	15.3	25.0	75.8	9.5	7.1	73.7	58	218	640	14.4	3140	1574	15338	4875	14.2
TransTrack [50]	19.2	31.6	84.4	11.8	5.8	82.9	224	280	412	16.1	4273	1403	21640	4079	6.7
ByteTrack [67]	41.5	70.7	85.7	24.8	69.3	84.0	591	217	108	36.8	3930	1704	28440	5383	16.4
Bot-SORT [1]	44.7	70.8	85.5	28.7	72.0	83.7	638	184	94	41.4	3183	1638	29300	4505	8.7
SMILETrack [63]	41.3	71.0	85.6	24.4	68.9	83.8	619	192	105	36.5	4227	1641	28821	5752	11.2

Qualitative Results of SOTA Tracking Models

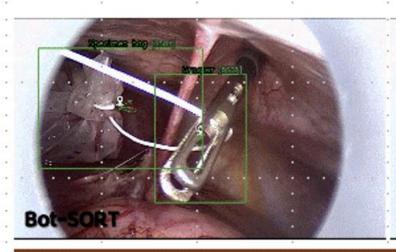


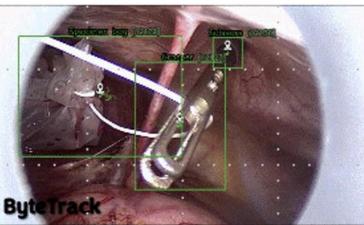

Tracking Performance Across Surgical Visual Challenges

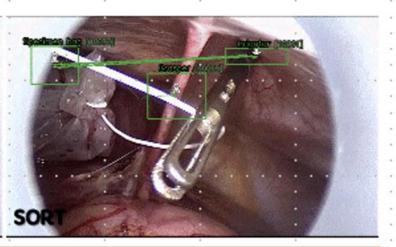




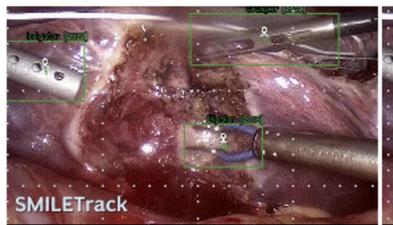
Tracking Performance Across Surgical Visual Challenges

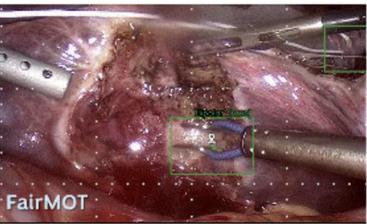


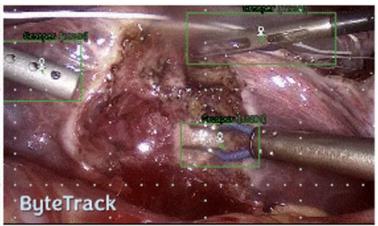




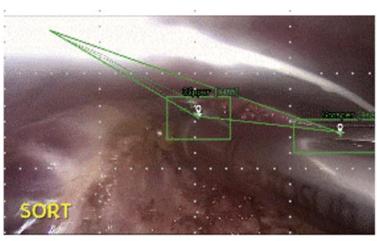
Tracking under Occlusion

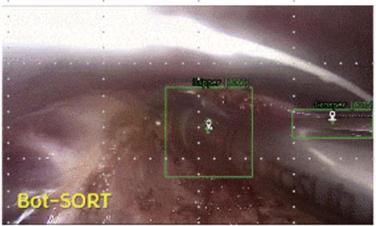


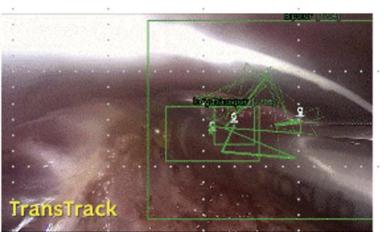



Tracking in Trocar View

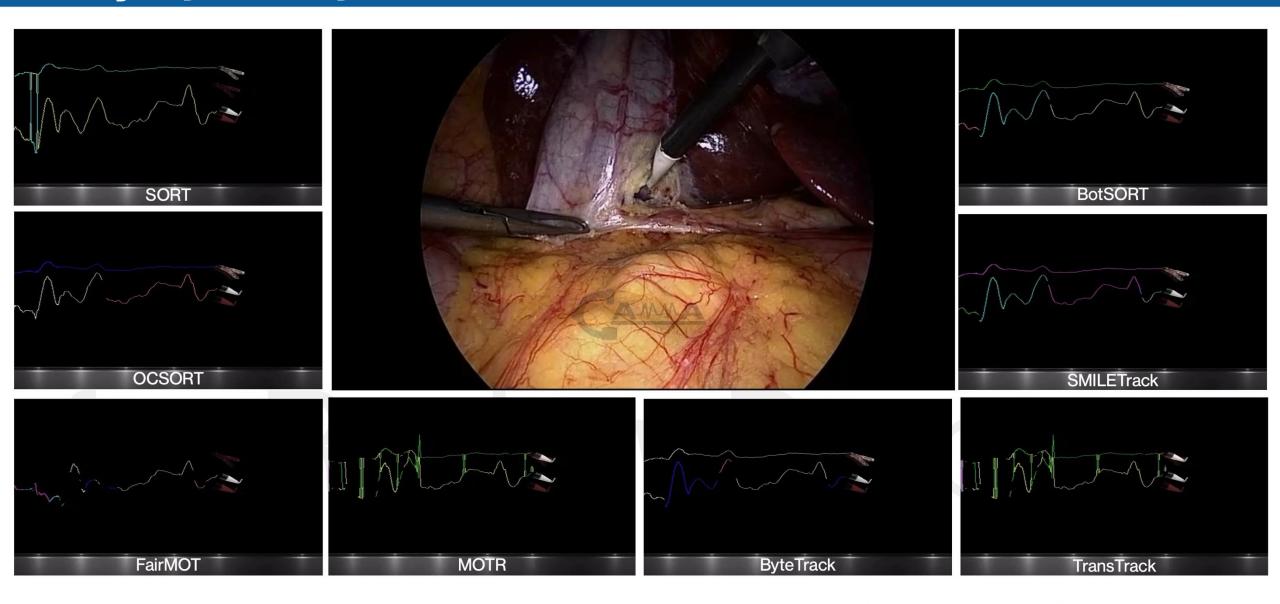
Tracking Performance Across Surgical Visual Challenges







Tracking in Waterlogged Scene

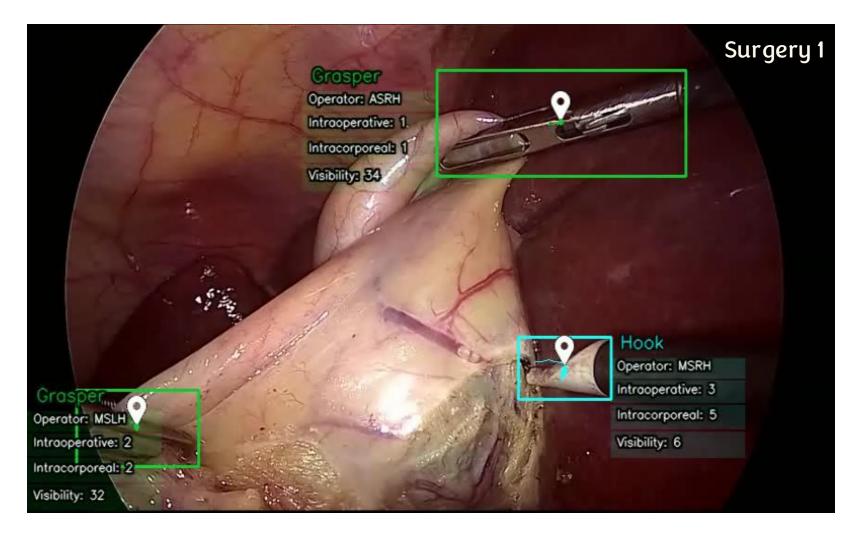


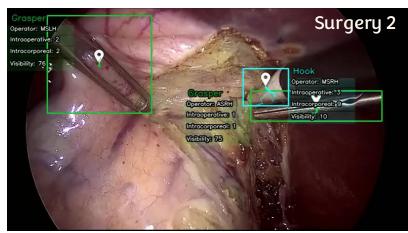
Tracking under Specular Light Reflection

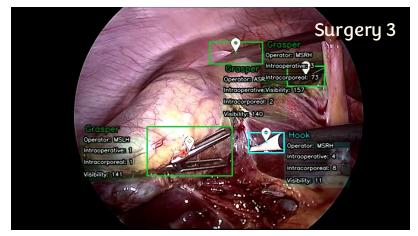
Analyzing Tracking Performance in 2D

Facilitates the development of robust Al systems for surgical assistance.

With better potential applications in skill assessment, safety zone estimation, navigation, and enhancing human-machine collaboration in the operating room.







Multi-Perspective Tracking with New SOTA - SurgiTrack

SurgiTrack jointly track all the 3 perspectives . . .

Implications for Computer Vision

- Multi-camera pedestrian & cross-view tracking
- Cross-view learning from autonomous driving
- Egocentric & robot-assisted video analysis
- Task-aware tracking in robotic surgery
- Integrating depth & kinematics for richer insight
- Benchmarking next-gen surgical tracking models

CholecTrack20

A Multi-Perspective Tracking Dataset for Surgical Tools

Paper

Dataset

Code

