

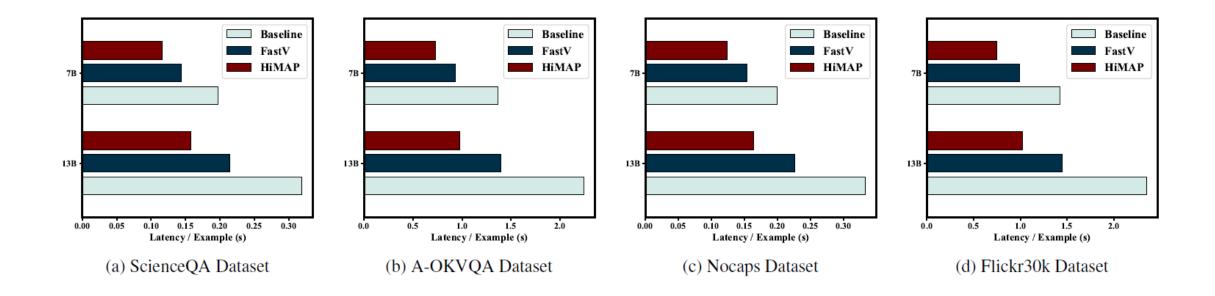
Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference

CVPR 2025

Hao Yin, Guangzong Si, Zilei Wang

Contributions

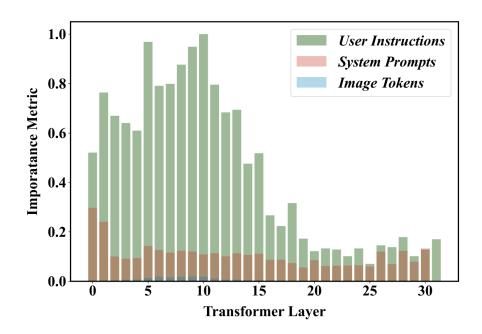
- Identifying latent patterns in the interactions between visual and textual modalities within MLLMs
- Introducing HiMAP, a plug-and-play technique that reduces inference latency in MLLMs while maintaining performance

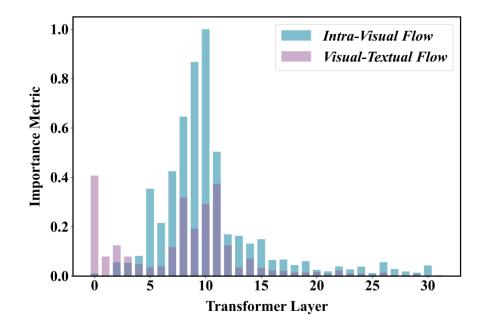


Hypothesis Driven by Saliency Scores

$$I_l = \left| \sum_h A_{h,l} \odot \frac{\partial \mathcal{L}(x)}{\partial A_{h,l}} \right|.$$

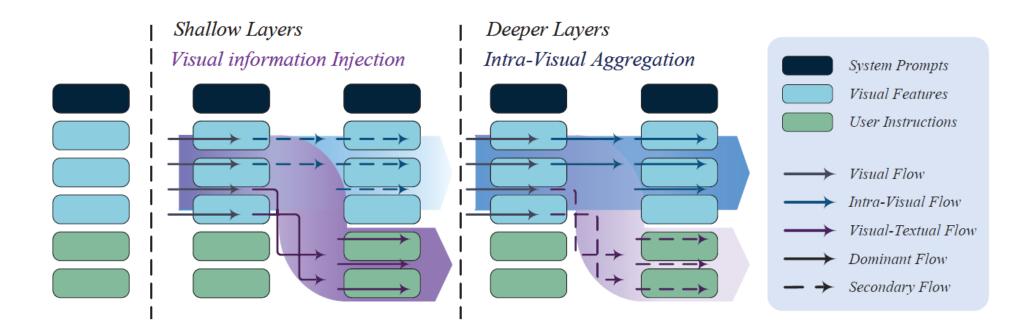
The saliency matrix I_l for the l-th layer is obtained by averaging across all attention heads. The significance of information flow from the j-th token to the i-th token in MLLMs is represented by $I_l(i,j)$.





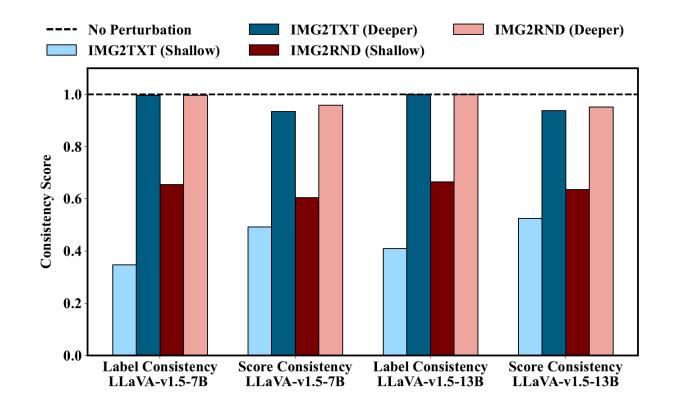
Shift in Dominant Flow of Visual Information

- In shallow layers, image tokens inject visual information into instruction tokens, facilitating cross-modal semantic representations for subsequent computations
- In deeper layers, image tokens consolidate residual visual information, refining the semantic representation within the visual modality



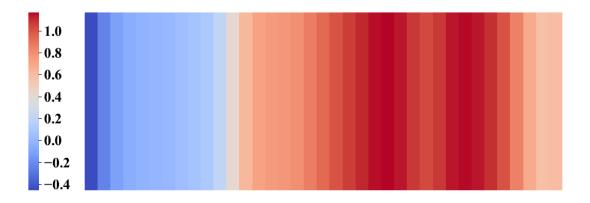
Shallow Layers: Visual Information Injection

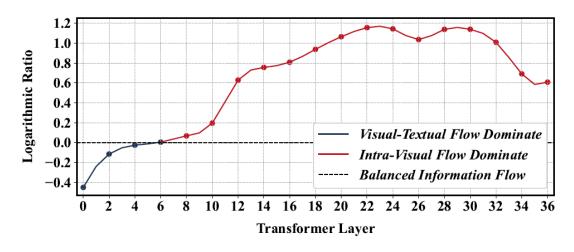
- To examine how visual information is integrated into instruction tokens, we blocked the interaction between image and instruction tokens at specific layers of the model.
- We observed that perturbations in the shallow layers significantly degraded model performance, whereas disruptions in the deeper layers had a much smaller impact.



Deeper Layers: Intra-Visual Aggregation

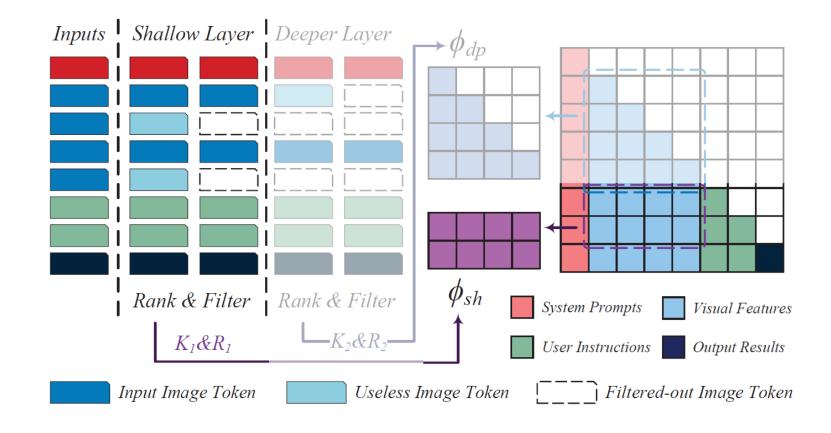
- We compared the relative importance of visual-textual and intra-visual information flows across different model depths.
- We observed that disrupting *intra-visual information flow* in deeper layers resulted in more substantial deviations in prediction outcomes.





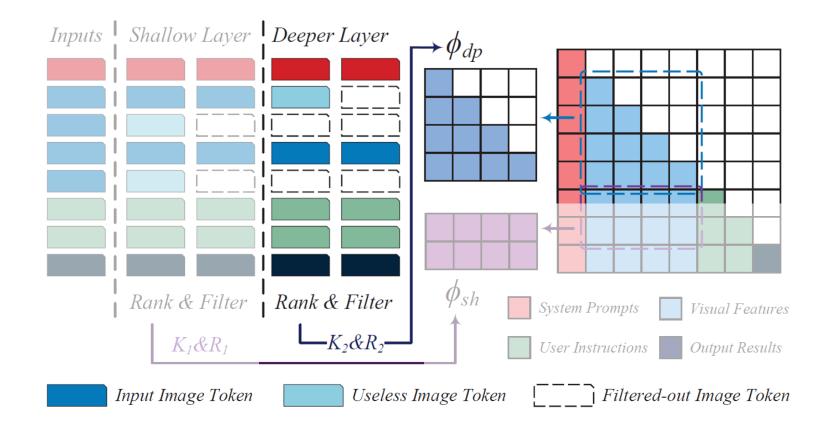
Hierarchical Modality-Aware Pruning

In shallow layers, HiMAP ranks image tokens at the K_1 -th layer based on the importance criterion ϕ_{sh} , removing the image tokens in the bottom $R_1\%$.



Hierarchical Modality-Aware Pruning

In deeper layers, HiMAP ranks the remaining image tokens at the K_2 -layer based on the importance criterion ϕ_{dp} , filtering out those in the bottom $R_2\%$.



Quantitative Results: Prediction Performance

- Improved performance is observed in nearly all short-answer tasks
- Effectively showcases the precision of redundant token elimination

Model	Method	TFLOPs	FLOPs Ratio	VQAv2	T-VQA	POPE	MME	S-VQA	A-OKVQA
LLaVA-7B	Baseline	2.98	100%	78.3	58.2	86.4	1749.9	67.9	76.6
	FastV	1.56	54%	78.1	58.3	84.9	1742.6	68.1	77
	HiMAP	0.73	24%	78.6	58.4	86.2	1785.1	68.3	77.2
LLaVA-13B	Baseline	5.81	100%	79.8	61.4	87.2	1794.4	71.6	82
	FastV	3.09	53%	79.9	61.4	84.8	1796.3	71.3	81.3
	HiMAP	1.36	23%	80.2	61.7	86.5	1809.4	72.1	81.4
QwenVL-7B	Baseline	3.6	100%	78.4	60.8	84.5	1782.6	68	75.7
	FastV	1.9	53%	78.5	58.3	82.7	1767.2	68.2	75.3
	HiMAP	0.89	25%	78.8	61.3	83.7	1798.3	68.5	75.9

Quantitative Results: Inference Speed

- Compared to the baseline, inference is approximately 50% faster
- Compared to FastV, inference is around 25% faster

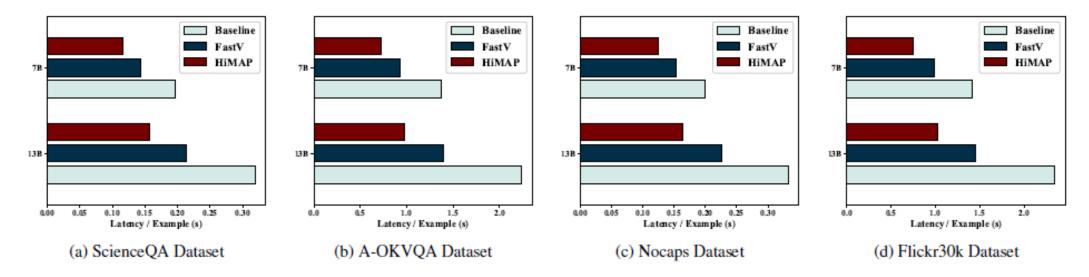


Figure 8. Comparison of real-world inference speeds between HiMAP and FastV. The experiment was conducted using LLaVA-v1.5 model family on a server equipped with a single 80GB A800 GPU.

Conclusions

Phased Processing of Visual Information

- In shallow layers, strong interactions are observed between image tokens and instruction tokens, where most visual information is injected into instruction
- In deeper layers, image tokens primarily interact with each other, aggregating the remaining visual information

Hierarchical Modality-Aware Pruning

• Inference speed is approximately 50% faster than the baseline, and about 25% faster than FastV