

# Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability

Yingdong Shi<sup>1\*</sup>, Changming Li<sup>1\*</sup>, Yifan Wang<sup>2</sup>, Yongxiang Zhao<sup>1</sup>, Anqi Pang<sup>3</sup>, Sibei Yang<sup>1</sup>, Jingyi Yu<sup>1</sup>, Kan Ren<sup>1†</sup>

<sup>1</sup>ShanghaiTech University <sup>2</sup>Stony Brook University <sup>3</sup>Tencent PCG

{shiyd2023, lichm2024, renkan}@shanghaitech.edu.cn

\*Equal contribution †Corresponding author









Diffusion models often perpetuate social biases, including gender, age, and race.

These biases may lead to detrimental effects in real-world contexts, such as reinforcing stereotypes in media representations or perpetuating inequalities in automated decision-making systems.





Existing approaches to debias diffusion models generally fall into two main strategies.

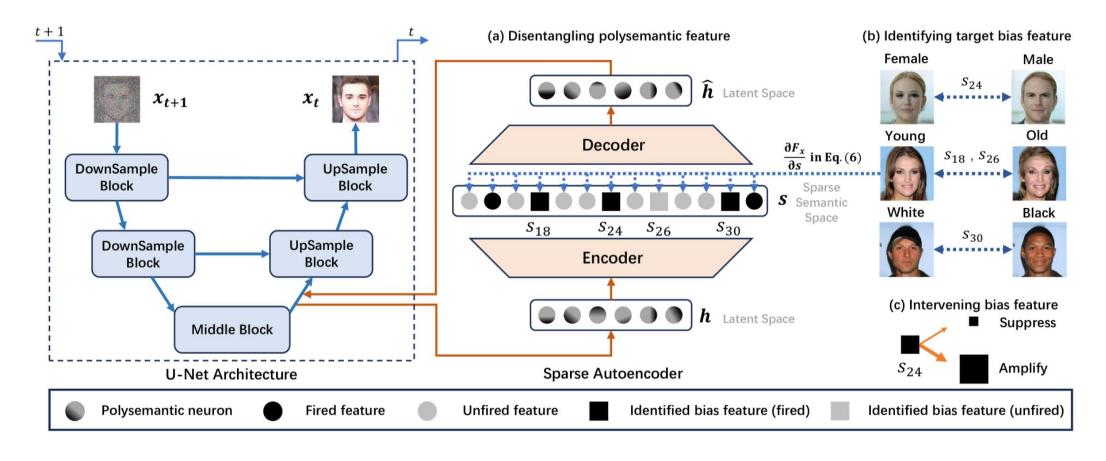
- Train unbiased models from scratch on biased datasets [1] or fine-tune the target model [2]
  - resource-intensive
  - significantly impact the model's original performance
- Guide or edit the generation process [3, 4, 11]
  - use gradients w.r.t distribution loss or learn a latent vector to guide the generation process
  - risking overcorrecting the model behavior or distorting non-target attributes

We are the first to interpret and find the *mechanisms* (features) related with property of generated contents, specifically those cause the bias output, within the semantic space in diffusion models.

Question: can we find mechanisms that help to better understand and mitigate bias within diffusion models?

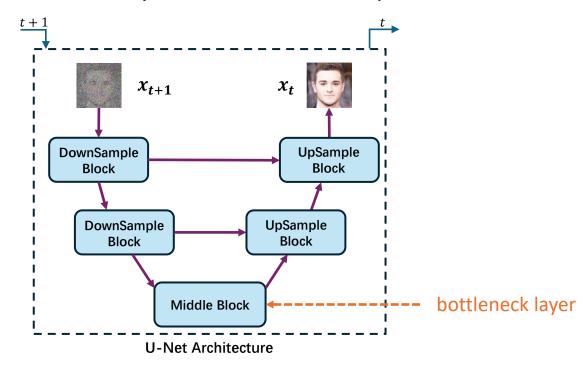


(a) Disentangling polysemantic feature (b) Identifying target bias feature (c) Intervening bias feature





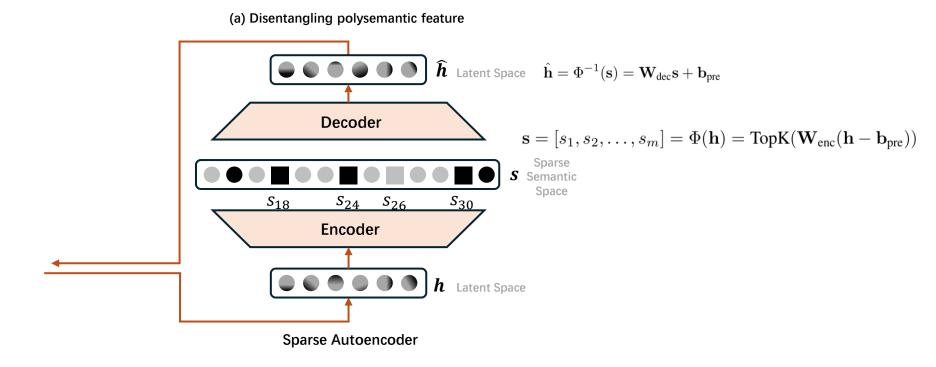
We follow [4] target at bottleneck layer, which is a semantic space in the U-Net [7] of diffusion models, suggesting that bias related mechanism may concentrate in this space.





Latent space is known as *ploy-semantic* [6], which means one neuron links to multiple unrelated concepts.

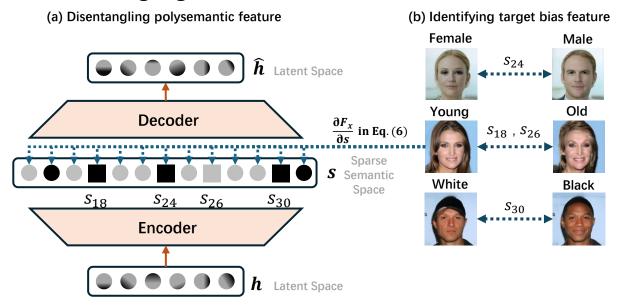
We follow [7] that finds interpretable features using Sparse Autoencoders to disentangle the latent space from the model layer into a *mono-semantic* space.





Social biases are related with activations of bias features.

To identify which feature causes bias generations, we train a light-weight classifier  $F_{\chi}$ , and then we identify bias related features using a gradient-based attribution method.

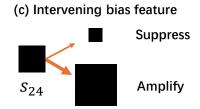


Sparse Autoencoder

$$S(s_i; \mathbf{x}) = (s_i - s_i') \cdot \int_{\alpha=0}^{1} \frac{\partial F_{\mathbf{x}}(\mathbf{s}' + \alpha(\mathbf{s} - \mathbf{s}'))}{\partial s_i} d\alpha$$

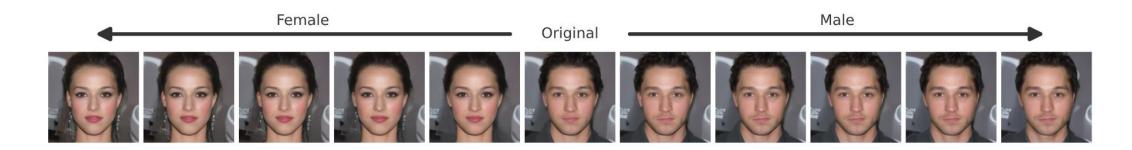


The bias level in generated images exhibits a monotonic relationship with the scale of bias-related features. Thus, we control over the level of bias in generated content by adjusting the activation scale of these features.



$$s_i = \text{Intervene}(s_i) = \begin{cases} \beta s_i & (\text{Scaling}), \text{ or } \\ s_i + \beta & (\text{Adding}). \ \forall i \in \mathbf{A}, \beta \in \mathbb{R}. \end{cases}$$

#### Intervention results





#### **Experiment settings**

- Diffusion Model Architecture
  - P2 model [8]
  - Stable Diffusion v1.5 [9]
- Baselines
  - interpretability methods
    - Activation [10] locates influential neurons according to the neuron activation values.
    - Latent Direction [11] identifies interpretable semantic directions within the latent space in the U-Net.
  - guidance-based methods
    - Latent Editing [4] tries to learn a latent vector to guide the unbiased generation within the bottleneck layer of U-Net.
    - H-Distribution [3] employs distributional loss on bottleneck layer as guidance in diffusion models.
  - Finetuned-based methods
    - Finetuning [2] finetunes the model to align with a user-defined target distribution.
- Evaluation metrics
  - Fairness Discrepancy (FD) [3] which calculates the Euclidean distance between a reference distribution and the bias distribution of generation.
  - Fréchet Inception Distance (FID) [12] measures quality of generated images.
  - CLIP-T calculates the CLIP-based semantic similarity between the generated image and the input text prompt.
  - CLIP-I assesses the similarity between originally generated images and images after debiasing.



Question: How effectively does DiffLens mitigate social bias while maintaining image quality?

Finding 1: DiffLens effectively neutralizes biases while preserving image quality.

#### P2 model [8]

| Category         | Method              |                                    | Gender       | (2)      | Age (3)                            |       |         | Race (4) |       |          |
|------------------|---------------------|------------------------------------|--------------|----------|------------------------------------|-------|---------|----------|-------|----------|
| cutegory         | Wiellou             | $\overline{\mathbf{FD}\downarrow}$ | FID ↓        | CLIP-I ↑ | $\overline{\mathbf{FD}\downarrow}$ | FID ↓ | CLIP-I↑ | FD ↓     | FID ↓ | CLIP-I ↑ |
|                  | Original            | 0.226                              | 33.38        | -        | 0.592                              | 33.38 | -       | 0.718    | 33.38 | -        |
| Guidance-based   | Latent Editing [32] | 0.003                              | 29.85        | 0.9474   | 0.606                              | 33.71 | 0.9092  | 0.317    | 34.61 | 0.9081   |
|                  | H-Distribution [43] | 0.048                              | <u>31.31</u> | 0.9440   | <u>0.511</u>                       | 34.21 | 0.8594  | 0.494    | 36.19 | 0.8762   |
| Interpretability | Activation [6]      | 0.190                              | 34.27        | 0.8060   | 0.544                              | 48.91 | 0.7793  | 0.700    | 46.13 | 0.7846   |
|                  | DIFFLENS (Ours)     | 0.002                              | 31.93        | 0.9479   | 0.401                              | 31.71 | 0.9414  | 0.447    | 33.47 | 0.9111   |

#### • Stable Diffusion v1.5 [9]

| Method                | Gender (2)                         |        |               |          | Age (3)                            |        |          |         | Race (4) |        |         |          |
|-----------------------|------------------------------------|--------|---------------|----------|------------------------------------|--------|----------|---------|----------|--------|---------|----------|
|                       | $\overline{\mathbf{FD}\downarrow}$ | FID ↓  | CLIP-I ↑      | CLIP-T ↑ | $\overline{\mathbf{FD}\downarrow}$ | FID ↓  | CLIP-I ↑ | CLIP-T↑ | FD ↓     | FID ↓  | CLIP-I↑ | CLIP-T ↑ |
| Original              | 0.564                              | 120.06 | -             | 0.6155   | 0.752                              | 120.06 | -        | 0.6155  | 0.558    | 120.06 | -       | 0.6155   |
| Latent Editing [32]   | 0.408                              | 166.11 | 0.8253        | 0.6005   | 0.682                              | 200.90 | 0.8527   | 0.6122  | 0.524    | 153.05 | 0.8804  | 0.6086   |
| H-Distribution [43]   | 0.222                              | 151.68 | 0.8475        | 0.6087   | 0.506                              | 147.71 | 0.8345   | 0.6098  | 0.544    | 126.90 | 0.8255  | 0.6100   |
| Latent Direction [33] | 0.305                              | 129.37 | 0.8058        | 0.6091   | 0.052                              | 113.81 | 0.8151   | 0.6067  | 0.175    | 128.30 | 0.8211  | 0.6132   |
| Fintuning [54]        | 0.050                              | 161.47 | 0.8779        | 0.6095   | 0.746                              | 161.47 | 0.8779   | 0.6095  | 0.198    | 161.47 | 0.8779  | 0.6095   |
| DIFFLENS (Ours)       | 0.046                              | 112.83 | <u>0.8501</u> | 0.6090   | 0.049                              | 99.17  | 0.8778   | 0.6057  | 0.401    | 119.86 | 0.9096  | 0.6149   |



Question: Can DiffLens accurately identify intrinsic mechanism of bias generation?

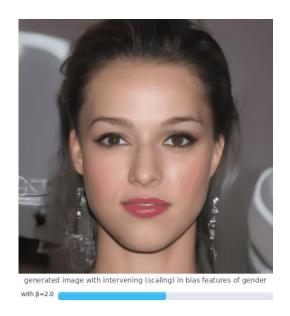
Finding 2: DiffLens preserves overall image semantics.



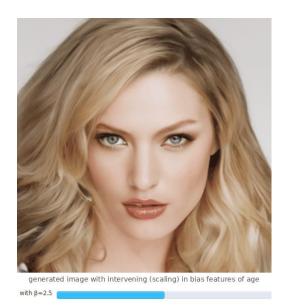


Question: How well does DiffLens control the bias level through intervening in the found bias features?

Finding 3: DiffLens produces natural transitions, consistently preserving semantic feature.



Female-Male



Young-Old



Asian-White-Black



100

80

40

Log Gender Ratio vs FID

Log Gender Ratio vs CLIP-I

DiffLens

L.E. H-Dist.

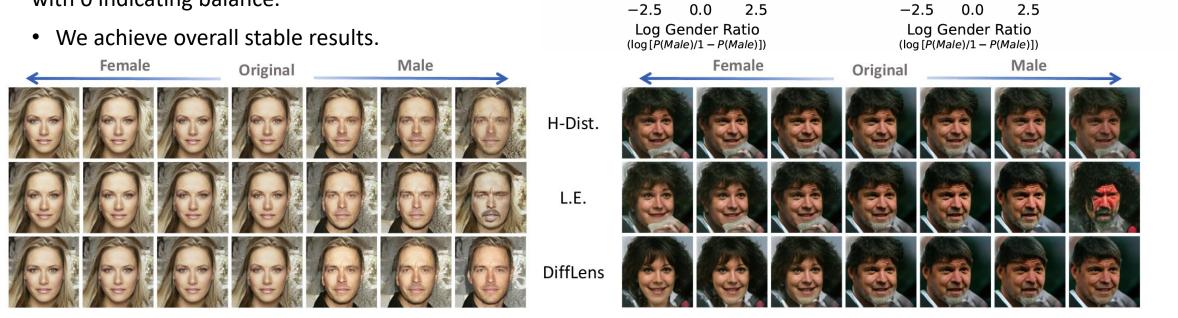
CLIP-I score

0.9

Question: How well does DiffLens control the bias level through intervening in the found bias features?

Finding 4: DiffLens offers broader bias control.

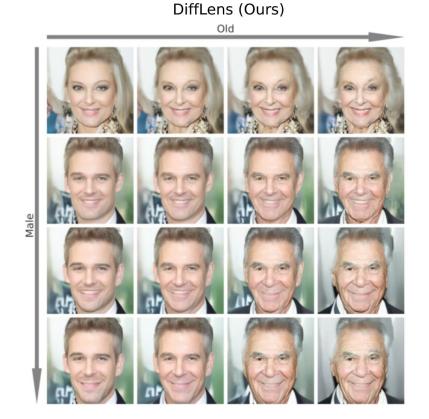
• The Log Gender Ratio in the right reflects the log  $\stackrel{\rightarrow}{\mathbb{Q}}$ Of male to female ratio in the generated images, with 0 indicating balance.

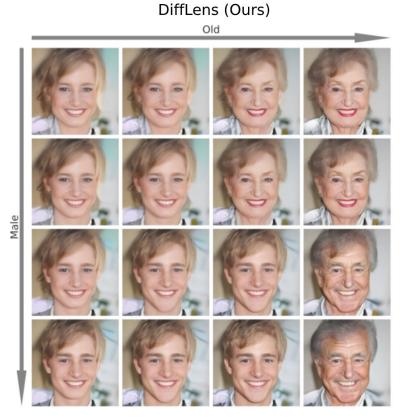




#### Question: Can DiffLens control multi-attributes simultaneously?

Finding 5: DiffLens is able to disentangle different bias features and accurate identification of these features.







### Reference

- [1] Yeongmin Kim, Byeonghu Na, Minsang Park, JoonHo Jang, Dongjun Kim, Wanmo Kang, and II chul Moon. Training unbiased diffusion models from biased dataset. (ICLR 2024).
- [2] Xudong Shen, Chao Du, Tianyu Pang, Min Lin, Yongkang Wong, and Mohan Kankanhalli. Finetuning text-to-image diffusion models for fairness. (ICLR 2024).
- [3] Rishubh Parihar, Abhijnya Bhat, Abhipsa Basu, Saswat Mallick, Jogendra Nath Kundu, and R Venkatesh Babu. Balancing act: Distribution-guided debiasing in diffusion models. (CVPR 2024).
- [4] Mingi Kwon, Jaeseok Jeong, and Young jung Uh. Diffusion models already have a semantic latent space. (ICLR 2023)
- [5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. (MICCAI 2015)
- [6] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition. (arXiv 2022).
- [7] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. (ICLR 2024).
- [8] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon. Perception prioritized training of diffusion models. (CVPR 2022)
- [9] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bj¨orn Ommer. High-resolution image synthesis with latent diffusion models. (CVPR 2022)
- [10] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language models. https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html, 2023
- [11] Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, and Jin-dong Gu. Self-discovering interpretable diffusion latent directions for responsible text-to-image generation. (CVPR 2024)
- [12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. (NeurIPS 2017).



#### **Key takeaways**

- We introduced a novel approach DiffLens, for mitigating social biases in diffusion models by dissecting, analyzing and intervening in the internal mechanisms of the diffusion model.
- We disentangle, identify, and control bias-related features with precision, allowing targeted bias mitigation while preserving non-target attributes.
- We offer an interpretable solution to bias mitigation in diffusion models.

Our paper and code are available at project page

