

SSP: High Temporal Consistency through **S**emantic **S**imilarity **P**ropagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight

https://github.com/FraunhoferIVI/SSP

Cédric Vincent^{1,2,*},

Taehyoung Kim^{1,*},

Henri Meeß¹

¹Fraunhofer IVI

²Télécom Paris, Institut Polytechnique de Paris

Goals

- Reliable autonomous systems require temporally consistent predictions.
- Aerial footage involves different motion dynamics than ground-level driving footage.

Cityscapes¹

- Ground-level footage
- Many independently moving objects

UAVid²

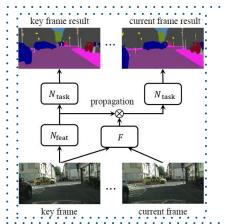
- Aerial footage
- Viewpoint shifts due to UAV motion

¹M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset," in *CVPR Workshop on The Future of Datasets in Vision*, 2015.

²Ye Lyu, George Vosselman, Gui-Song Xia, Alper Yilmaz, and Michael Ying Yang. Uavid: A semantic segmentation dataset for uav imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165:108 – 119, 2020

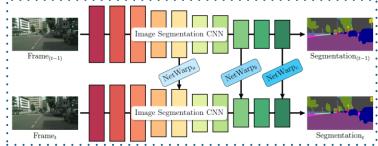
Challenges

- On-board processing: Limited computational power during inference
- Limited label data, sparse annotation often not suitable for temporal consistent training



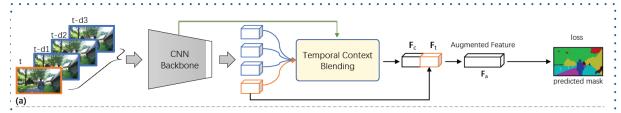
✓ DFF³ reuses last key-frame features aligned via optical flow for efficient prediction.

X Partial computation on non-key frames limits accuracy.



X Slow optical flow computation limits real-time performance.

NetWarp4
Enhances
features with
temporal context
via optical flow
and linear
interpolation.



- ✓ TCB⁵ uses attention-based mixing for temporal feature enhancement.
- X High computation hinders real-time deployment.

- SSP focuses on real-time video segmentation tailored for UAVs, balancing accuracy, consistency, and efficiency.
- SSP efficiently augments any image semantic segmentation model
- KD-SSP leverages unlabeled frames to enhance performance.

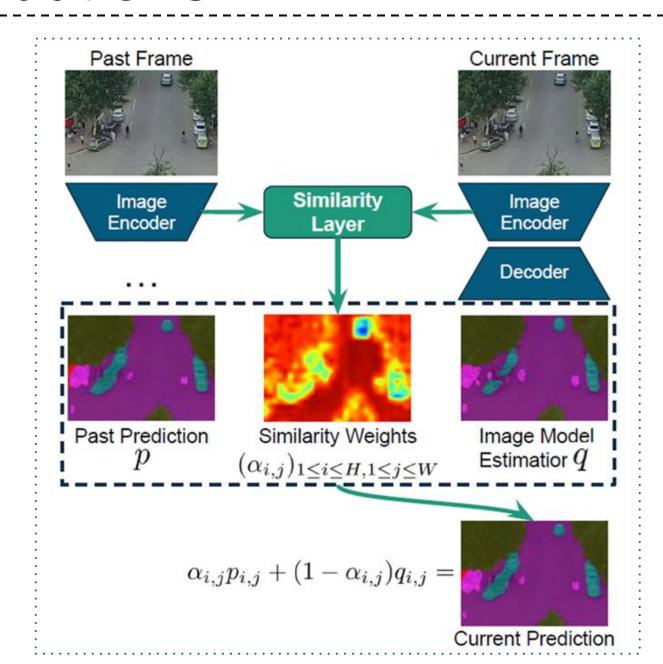
³Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for video recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2349–2358, 2017.

⁴Raghudeep Gadde, Varun Jampani, and Peter V. Gehler. Semantic video cnns through representation warping. In The IEEE International Conference on Computer Vision (ICCV), 2017.

⁵Jiaxu Miao, YunchaoWei, YuWu, Chen Liang, Guangrui Li, and Yi Yang. Vspw: A large-scale dataset for video scene parsing in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.

Contributions

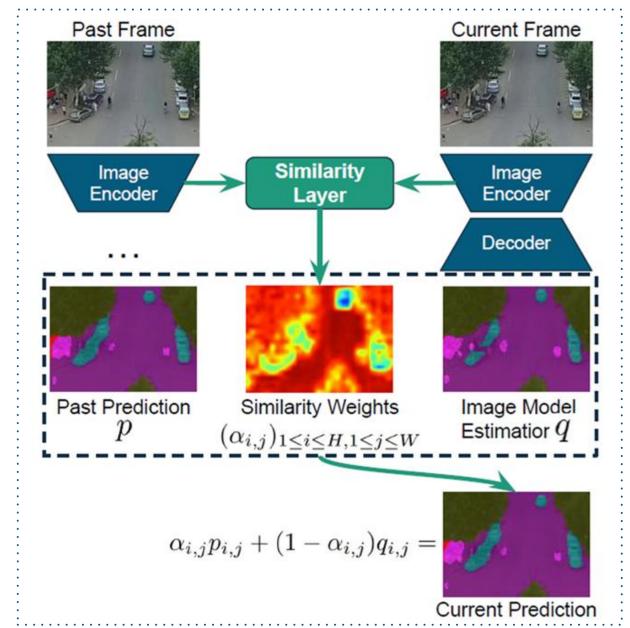
Simple temporal propagation of predictions



Contributions

- Simple temporal propagation of predictions
- Global registration alignment

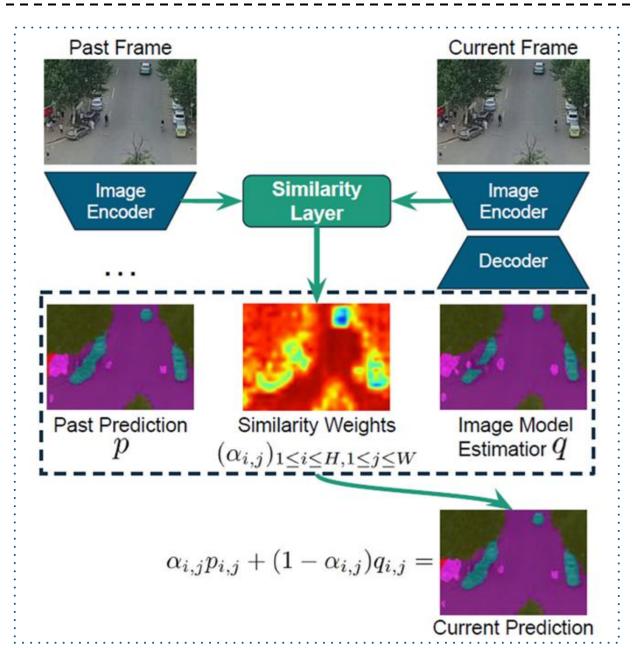
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

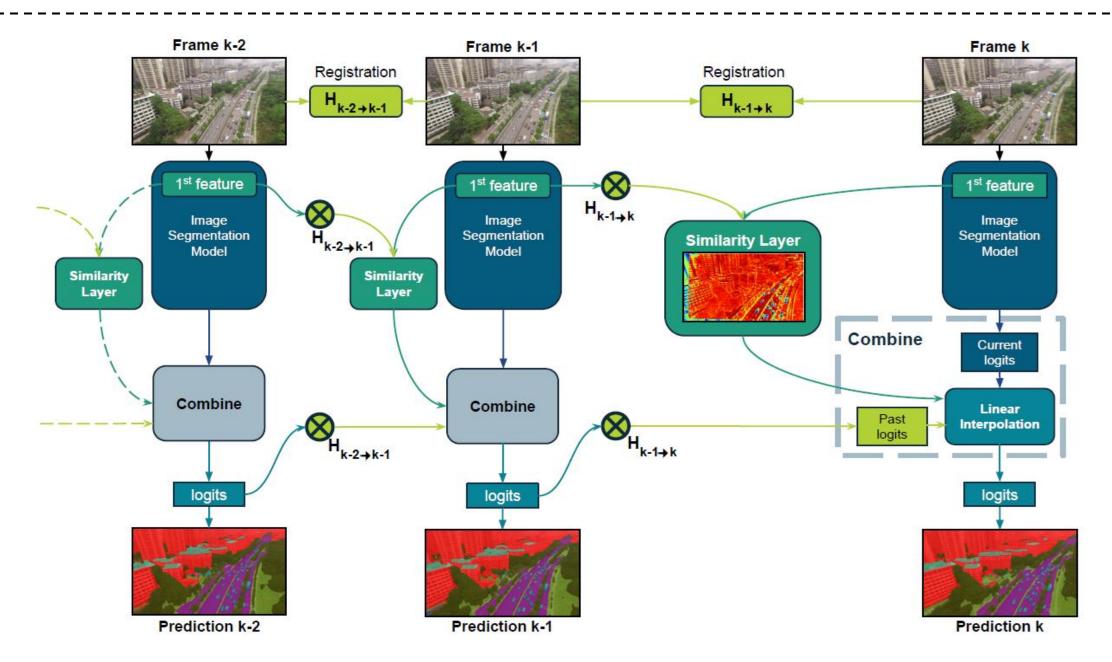


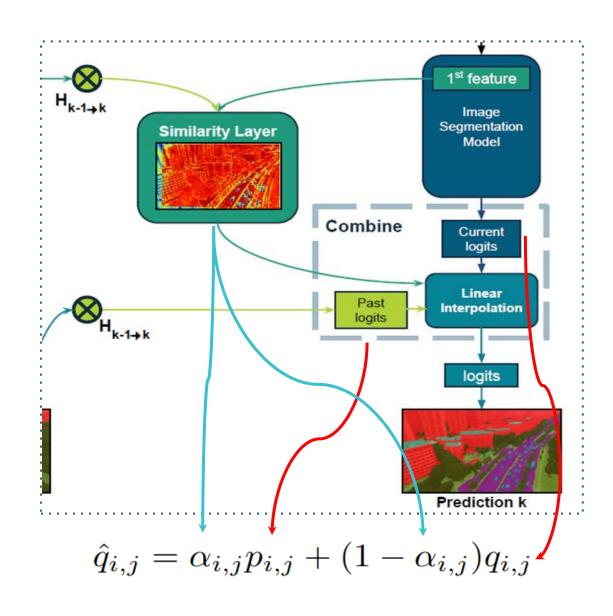
Contributions

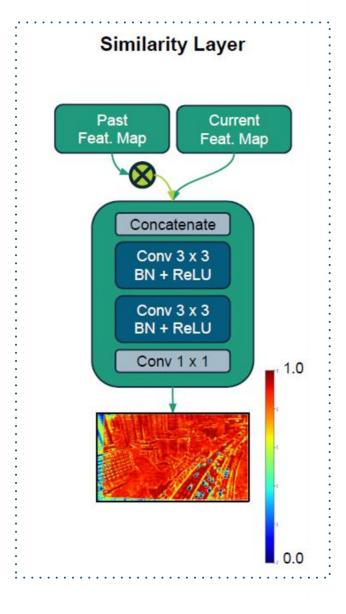
- Simple temporal propagation of predictions
- Global registration alignment
- Consistency-aware knowledge distillation to train efficient models on sparsely labeled datasets

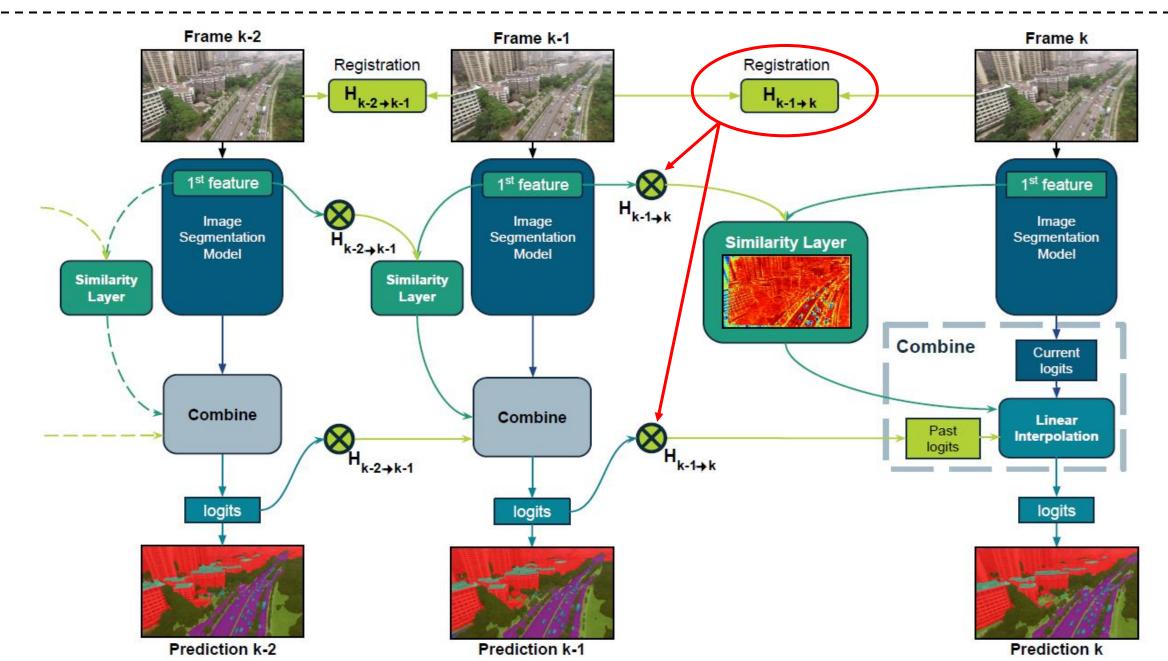
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$











Without knowledge distillation

$$\mathcal{L}_{tc} = rac{1}{HW} \sum_{i,j} \left\| \mathbf{O}_{i,j}^{k-1 o k} \left\| y_{i,j} - \hat{x}_{i,j}
ight\|_2^2$$

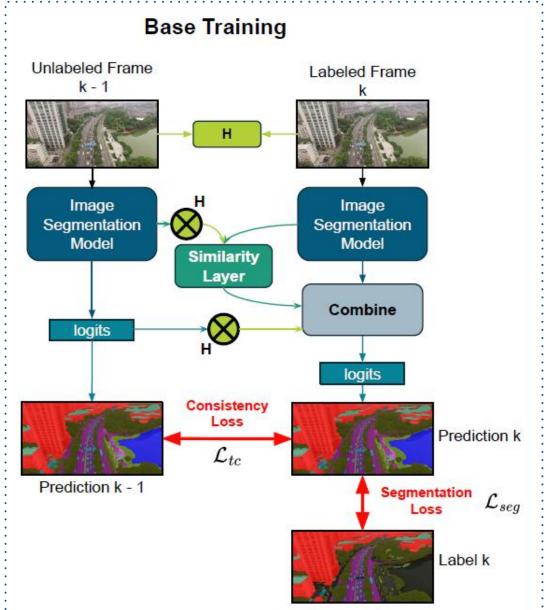
Current prediction Previous prediction aligned with optical flow

Occlusion Mask:

$$\mathbf{O}_{i,j}^{k-1\to k} = exp(-\left\|\mathbf{I}_{i,j}^k - \hat{\mathbf{I}}_{i,j}^{k-1}\right\|_1)$$

Current frame

Previous frame aligned with optical flow



SSP (Occlusion Mask)

Without knowledge distillation

$$\mathcal{L}_{tc} = \frac{1}{HW} \sum_{i,j} \mathbf{O}_{i,j}^{k-1 \to k} \|y_{i,j} - \hat{x}_{i,j}\|_{2}^{2}$$

Current prediction.

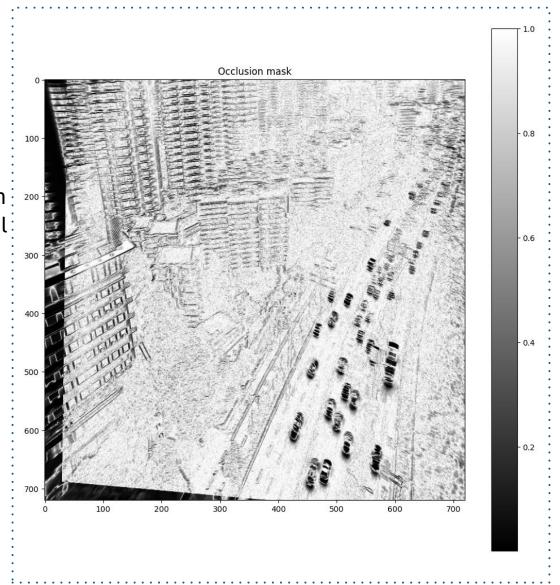
Previous prediction 2007 aligned with optical flow

Occlusion Mask:

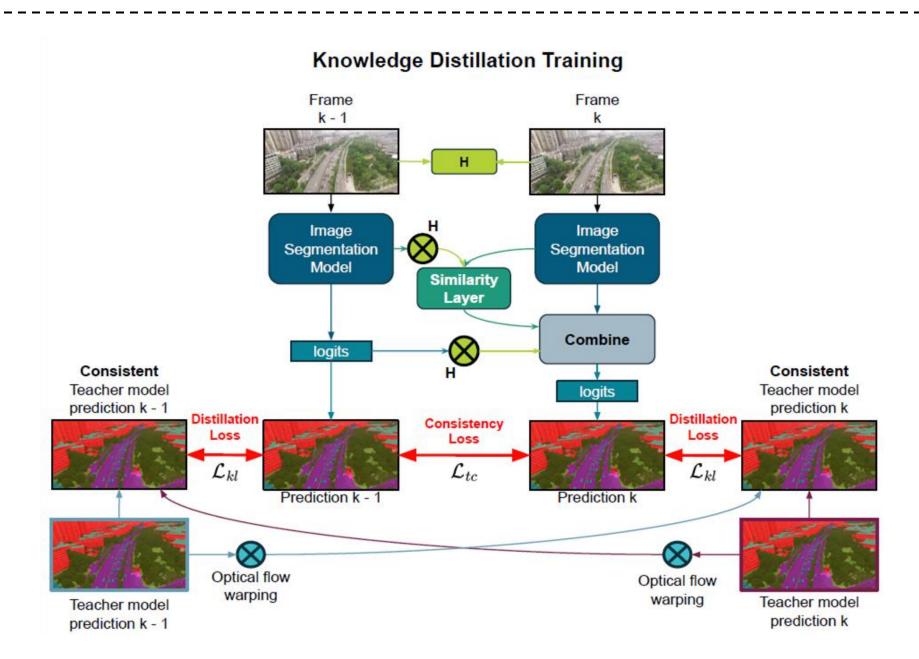
$$\mathbf{O}_{i,j}^{k-1\to k} = exp(-\left\|\mathbf{I}_{i,j}^k - \hat{\mathbf{I}}_{i,j}^{k-1}\right\|_1)$$

Current frame

Previous frame aligned with optical flow

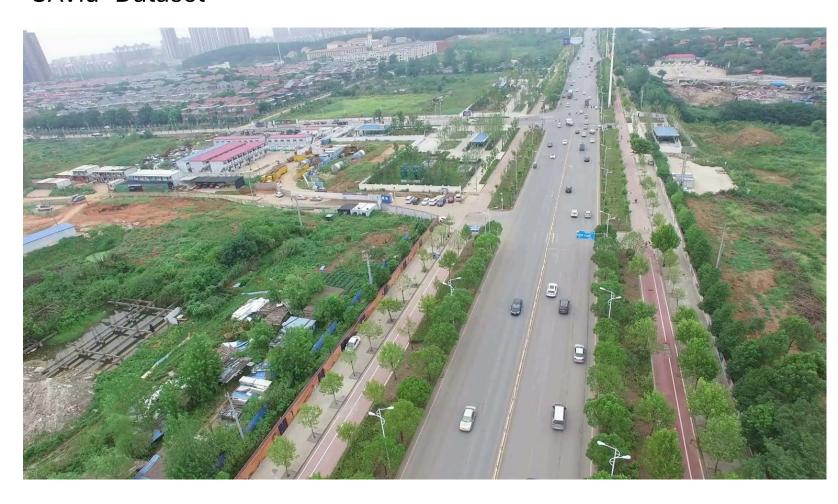


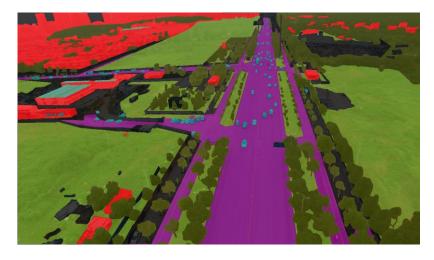
KD-SSP



Experiments

UAVid² Dataset





²Ye Lyu, George Vosselman, Gui-Song Xia, Alper Yilmaz, and Michael Ying Yang. Uavid: A semantic segmentation dataset for uav imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 165:108 – 119, 2020

Experiments

RuralScapes⁶ Dataset

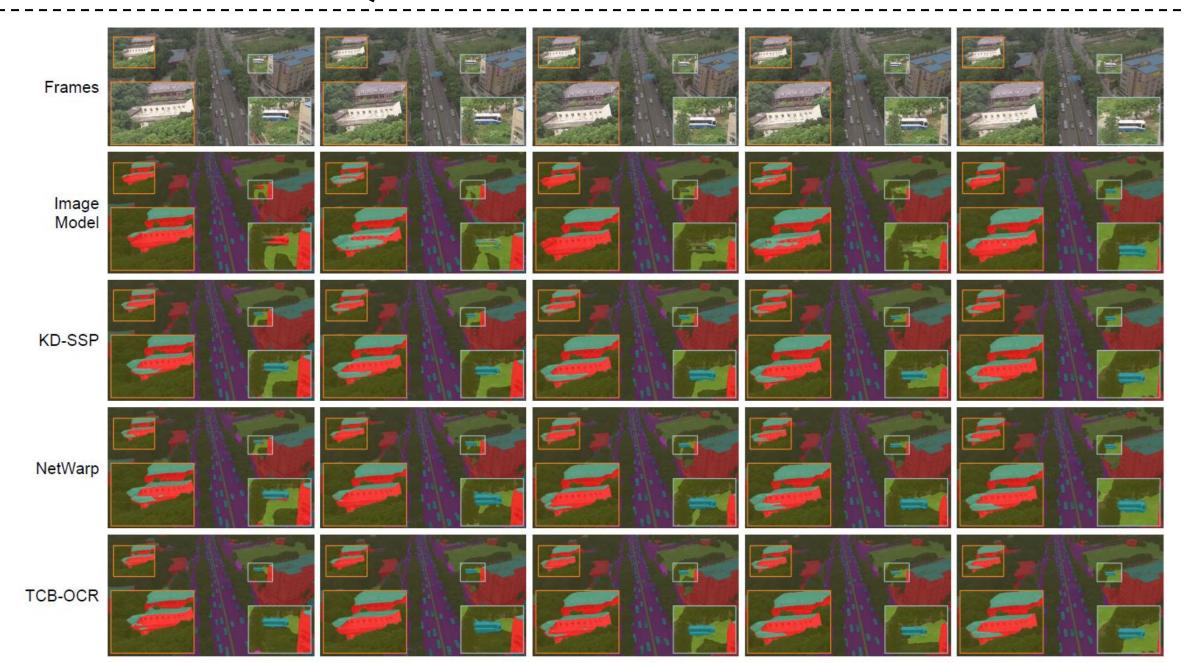
⁶Alina Marcu, Vlad Licaret, Dragos Costea, and Marius Leordeanu. Semantics through time: Semi-supervised segmentation of aerial videos with iterative label propagation. In *Computer Vision – ACCV 2020*, pages 537–552, Cham, 2021. Springer International Publishing

Results

- Base Image Model: Hiera-S + UPerNet
- KD-SSP achieves superior accuracy-speed trade-off and higher consistency

	Method	Params	GFLOPs	Fl	PS	UAV	id	RuralS	capes
	Method	1 at atits	Grlors	A100	Orin	mIoU↑	TC ↑	mIoU↑	TC ↑
Image Models	Teacher Model	101.01M	-	-	-	81.92	84.09	66.65	89.43
	SegFormer - b2	27.36M	204.1	77	-	77.81	83.76	62.75	86.89
	SegFormer - b3	47.23M	256.7	48	-	78.02	82.59	63.53	86.65
	ConvNeXt-S + UPerNet	81.77M	922.0	96	-	78.35	83.13	63.29	86.70
	Base Image Model	43.17M	310.6	104	31.4	79.23	79.02	63.51	87.34
	KD Base Image Model (Ours)	43.17WI	310.0	104		80.38	87.15	64.46	90.37
	DFF [55]	48.43M	137.2	23*	-	77.20	83.28	62.66	88.75
Video Models	NetWarp [12]	48.44M	739.9	15*	-	79.31	82.19	63.99	88.48
	TCB_{ppm} [33]	64.56M	1350.3	19	-	79.61	81.35	63.83	87.73
	TCB_{ocr} [33]	63.49M	1379.4	18	-	79.67	82.22	63.56	88.39
	SSP (Ours)	43.38M	322.8	95	29.3	79.75	92.10	64.00	94.06
	KD-SSP (Ours)	45.36WI				80.63	91.53	64.56	94.00
		·	·						

Qualitative Results

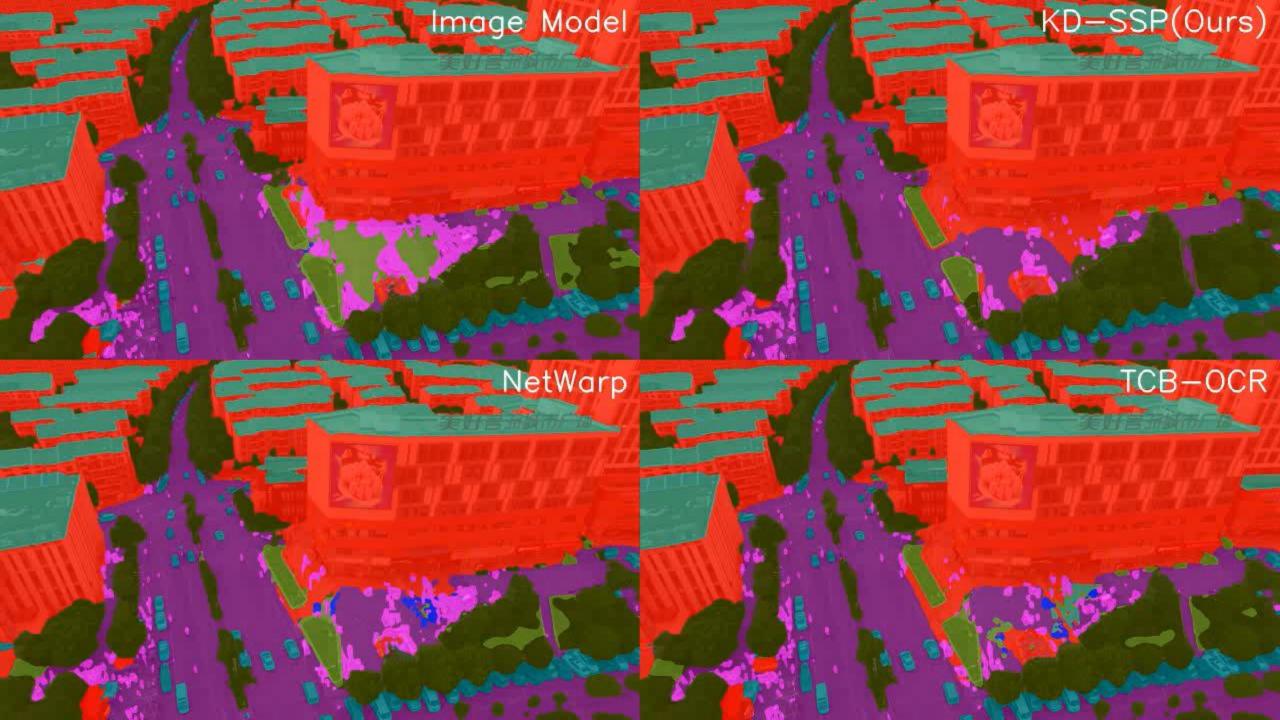


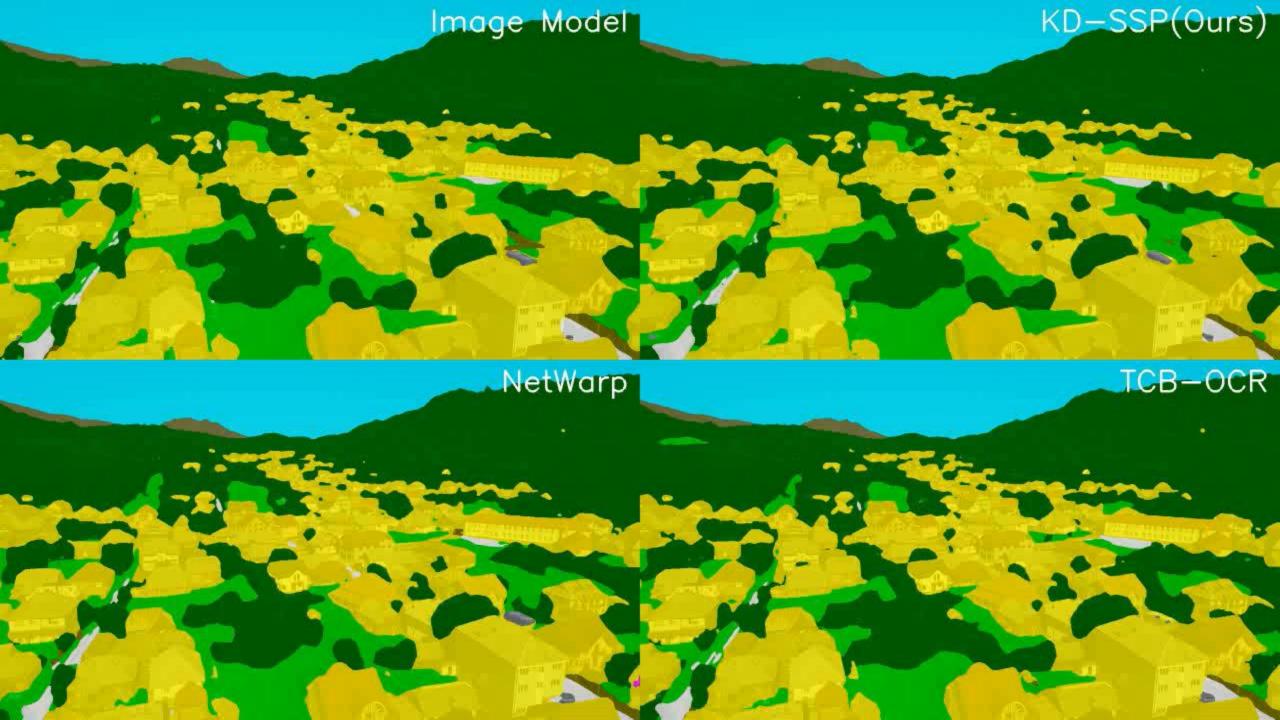
Ablation study

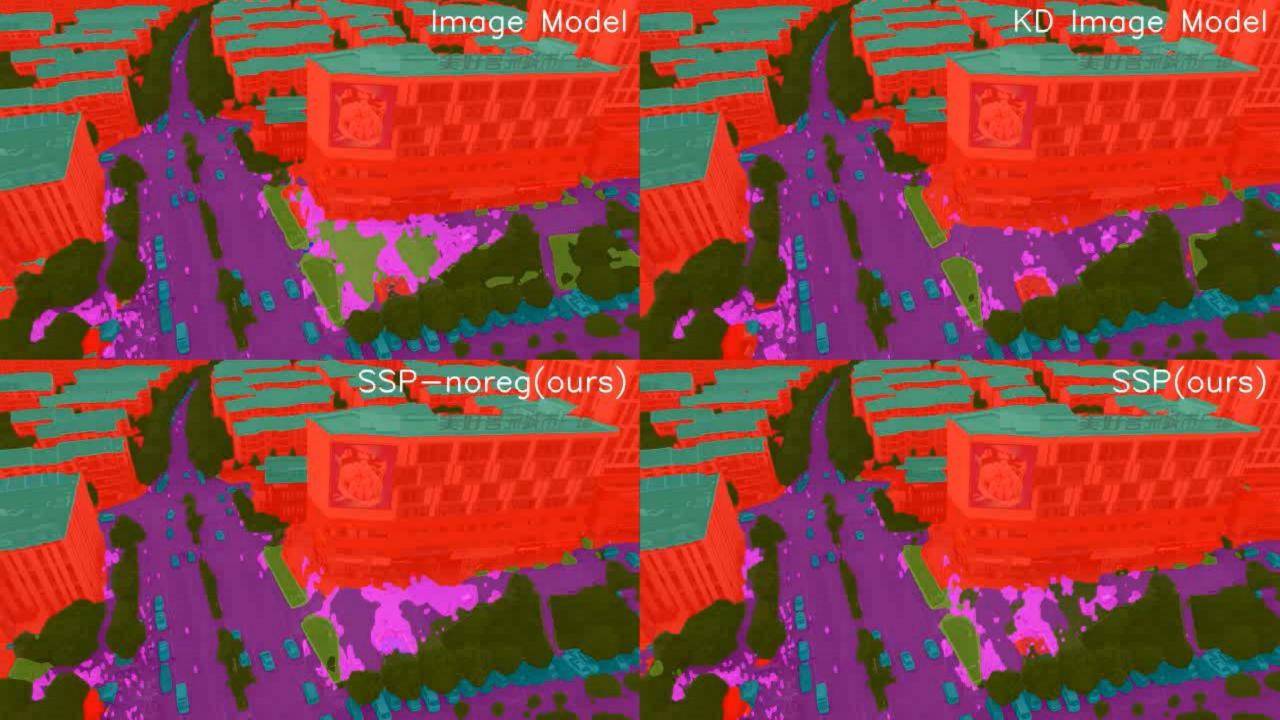
- Similarity layer design:
 - Learned convolutional layers > cosine similarity
- No global registration alignment:
 - No loss of accuracy, but lower consistency
- No propagation of predictions through interpolation:
 - Same accuracy, lower consistency
- Consistency loss is essential to higher TC
- Same results without training the base image model on the dataset

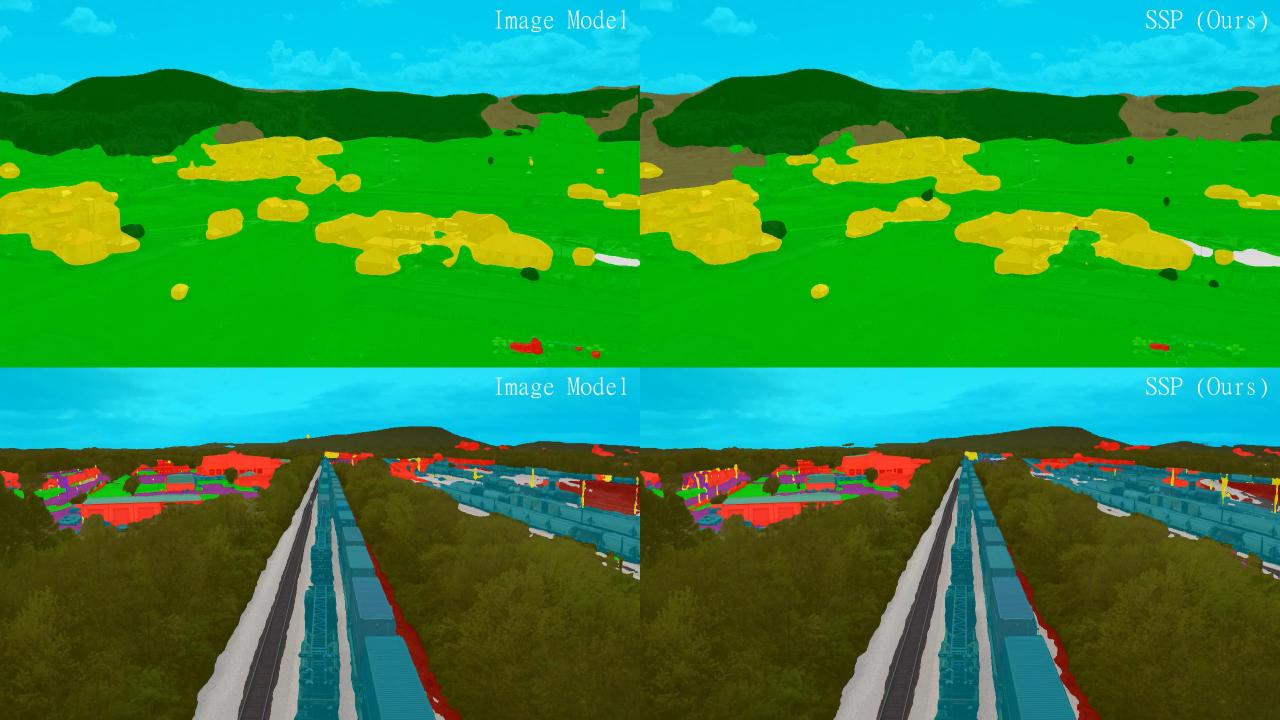
1) .	Model	mIoU	TC
2 ,	Base image model	79.23	79.02
	Base parameters	79.87	92.01
	Cos. Sim. Interpolation (TFC)	79.20	91.67
	No registration alignment	79.84	89.65
SSP	No interpolation	79.99	88.20
	No consistency loss	80.01	86.38
	1-step training	79.92	91.97

Table 3. **Ablation study** $_{\mathbb{I}}$ **of SSP.** *Base parameters* corresponds to the described SSP configuration used for Tab. 1. Results are obtained without knowledge distillation. UAVid dataset, 736 \times 1280 resolution.









SSP: High Temporal Consistency through Semantic Similarity Propagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight

- **SSP** propagates **semantic similarity** to ensure **temporal consistency**.
- **SSP** aligns predictions using **global transformations** to handle **UAV motion**.
- KD-SSP applies consistency-aware distillation to leverage unlabeled frames and boost accuracy.

IVI **Project** Homepage **Page**

For additional code and videos, please visit our project page: https://gomtae.github.io/publications/ssp

For more exciting projects, please visit our **IVI homepage**: https://www.ivi.fraunhofer/en

Cédric **Taehyoung** Henri Vincent Kim Meeß