

Sketch Down the FLOPs:

Towards Efficient Networks for Human Sketch

Sain 1

Subhajit Maity ^{2*}

Pinaki Nath Chowdhury ¹

Subhadeep Koley ¹

Ayan Kumar Bhunia ¹

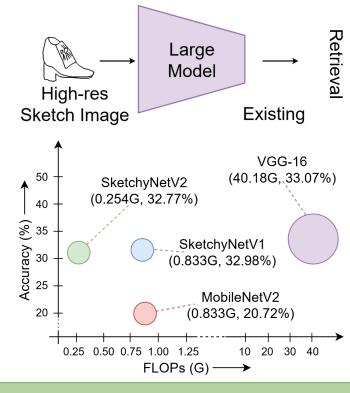
Yi-Zhe Song ¹

- 1. SketchX, CVSSP, University of Surrey, United Kingdom
- 2. Department of Computer Science, University of Central Florida, United States

* Work done during an internship at SketchX before joining UCF

Motivation

- A practical challenge of sketch-based applications faced by the community till date *Inference Efficiency*.
- Existing sketch-models are large and lacks designs catering to efficiency, and thus, are unfit for practical implementation.
- Efficient photo networks with limited sketch understanding results in lower accuracy on sketch-based applications.
- We aim to produce sketch-specific efficient models to ensure low computation overhead while retaining the task-level performance.



Issues

- Sketch-specific designs.
- Performance vs.
 Efficiency.

Intuition

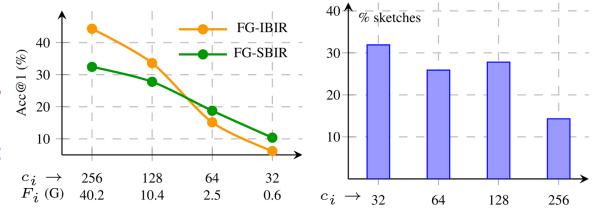
 Sketches are sparse and abstract – ideal for compressing information.

Proposed Approach

- Transfer performance from better models to efficient ones.
- Scaling input resolution.

Pilot Study

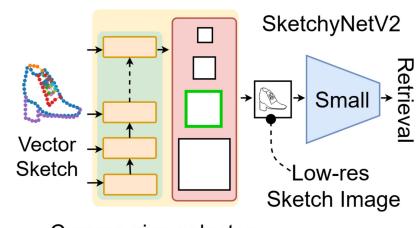
- Does sparsity help in lower resolution? Let us consider the popular task, Fine-Grained Image Retrieval.
- Comparing the image-based retrieval task (FG-IBIR)
 vs. sketch-based retrieval task (FG-SBIR).
 - Photos are pixel-dense; retrieval accuracy drops rapidly with input resolution.
 - Sketches are abstract and sparse; more tolerant to decreasing input resolution.



• The percentage of sketches needing a higher input resolution for a perfect retrieval decreases progressively.

Our Solution

- A canvas-selector to predict input resolution.
- Retrieval using a *small* and *efficient network* with task-level **knowledge transfer** from state-of-the-art models.



Canvas-size selector

Our Framework

- Baseline: VGG16 backbone trained sketch-photo triplet loss as a pre-trained teacher.
- SketchyNetV1: A smaller network MobileNetV2 trained with knowledge distillation.
 - Supervision with traditional *sketch-photo triplet loss*.
 - Knowledge Distillation of l_2 distance as sketch-photo alignment from pre-trained teacher to student using a Huber Loss.

$$\mathcal{L}_{\text{RKD}}^{sp} = \mathcal{L}_{\delta}(d_{sp}^{T}, d_{sp}^{st})$$

• Alignments between each pair of the sketch-photo triplet is considered.

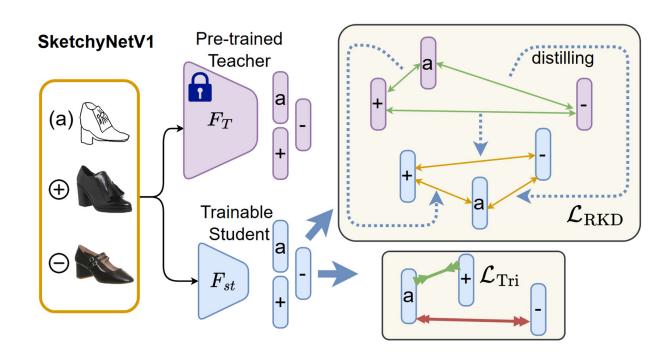
$$\mathcal{L}_{\text{RKD}} = \mathcal{L}_{\text{RKD}}^{sp} + \mathcal{L}_{\text{RKD}}^{sn} + \mathcal{L}_{\text{RKD}}^{pn}$$

Total loss is weighted sum of both losses.

$$\mathcal{L}_{trn}^{st} = \lambda \mathcal{L}_{Tri} + (1 - \lambda) \mathcal{L}_{RKD}$$

Trained using sketches rendered with varying canvas sizes.

$$\mathcal{L}_{Tri} = \max\{0, m + \delta(f_s, f_p) - \delta(f_s, f_n)\}\$$



$$\mathcal{L}^{st*}_{ ext{trn}}=rac{1}{4}\sum_{i=1}^4\mathcal{L}^{st(c_i)}_{ ext{trn}}$$
 where, $c_i\in C$ and C = $\{32 imes32,\cdots,256 imes256\}$

Our Framework

- SketchyNetV2: GRU or LSTM as an adaptive canvas-size selector and SketchyNetV1 student as critic.
 - Sketch-vector s_v for modeling $p(c|s_v)$ with policy network ψ_C followed by a linear layer (γ) .

$$p(c|s_v) = \operatorname{softmax}(W_{\gamma}f_{s^T} + b_{\gamma})$$

- Sample canvas-size from $c_{pred} \sim \texttt{categorical}([p(c_1|s_v), \cdots, p(c_K|s_v)])$.
- Lower FLOPs refer to higher rewards. $R_{\text{comp}} = (-\mathcal{L}_{\text{F}})$ $\mathcal{L}_{\text{F}} = \frac{\sum_{j=1}^{K} (q_j \cdot \eta_j)}{q_{max} q_{min}}$ where, $\eta_i = p(c_i|s_v)$
- Lower retrieval rank and loss refers to higher rewards.

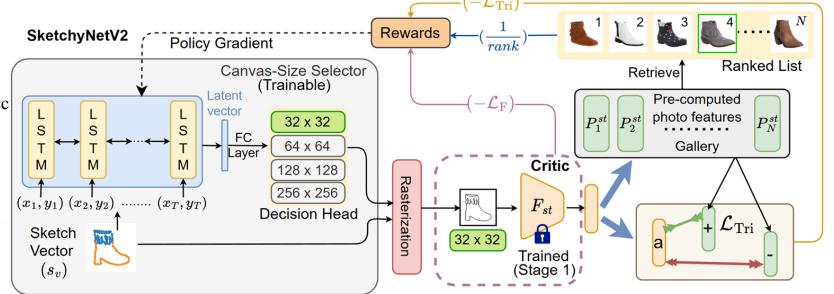
$$R_{
m acc} = \lambda_r(1/r) + \lambda_{
m Tri}(-\mathcal{L}_{
m Tri})$$

Total Reward:

$$R_{\text{Tot}} = \lambda_{\text{F}} R_{\text{comp}} + (1 - \lambda_{\text{F}}) R_{\text{acc}}$$

 Policy Gradient optimization

$$\mathcal{L}_{PG}(\theta) = -\frac{1}{B} \sum_{i=1}^{B} \log p(c|s_v^i) \cdot R_{\text{Tot}}^i$$



Experiments

Datasets: QMUL ShoeV2 [1], QMUL ChairV2 [1], Sketchy Extended [2], FS-COCO [3]

Competitors: Triplet-SN [1]

HOLEF-SN [4]

Triplet-RL [5]

StyleVAE [6]

Partial-OT [7]

• **KD Baselines:** B-Regress – uses a l_2 regression [8]

B-AKD – uses spatial attention maps [9]

B-PKT – uses conditional probability [10]

Pruning Baselines: B-Thinet – uses filter level strategy [11]

B-Prune – uses convolutional pruning [12]

Other Baselines: B-VGG16-SN – VGG16 with Triplet-SN [1]

- **Evaluation:** Top-q accuracy for task *performance* and FLOPs for *computation*.
- [1] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and Chen-Change Loy. Sketch me that shoe. In CVPR, 2016.
- [2] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy database: learning to retrieve badly drawn bunnies. ACM TOG, 2016.
- [3] Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhunia, Tao Xiang, Yulia Gryaditskaya, and Yi-Zhe Song. FSCOCO: Towards understanding of freehand sketches of common objects in context. In ECCV, 2022.
- [4] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. Deep spatial-semantic attention for fine-grained sketch-based image retrieval. In ICCV, 2017.
- [5] Ayan Kumar Bhunia, Yongxin Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song. Sketch less for more: On-the-fly fine-grained sketch based image retrieval. In CVPR, 2020.
- [6] Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, and Yi-Zhe Song. Stylemeup: Towards style-agnostic sketch-based image retrieval. In CVPR, 2021.
- [7] Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Viswanatha Reddy Gajjala, Aneeshan Sain, Tao Xiang, and Yi-Zhe Song. Partially does it: Towards scene-level FG-SBIR with partial input. In CVPR, 2022.
- [8] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antonie Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
- [9] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In ICLR, 2017.
- [10] Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge transfer. In ECCV, 2018.
- [11] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In ICCV, 2017.
- [12] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural networks for resource efficient inference. Preprint arXiv:1611.06440, 2016.

Quantitative Results

Competitors

 and baselines
 adapted to our
 framework.

	Methods	Canvas-size	Canvas-size Params ShoeV2[1]			ChairV2 [1]			Sketchy [2]			FSCOCO [3]			
		$c \times c$	(mil.)	Top1 (%)	Top10 (%)	FLOPS (G)	Top1 (%)	Top10 (%)	FLOPS (G)	Top1 (%)	Top10 (%)	FLOPs (G)	Top1 (%)	Top10 (%)	FLOPS (G)
State-of-the-Arts	Triplet-SN [1]	32x32 64x64 128x128 256x256 SketchyNetV1 SketchyNetV2	8.75 8.75 8.75 8.75 2.22 2.27	17.63 (\11.08)	24.82 (\(\pm46.74\) 44.96 (\(\pm26.60\) 62.35 (\(\pm9.21\) 71.56 69.01 (\(\pm2.55\) 68.76 (\(\pm2.80\)		30.25 (\$\psi 17.4)	29.86 (↓54.38) 54.21 (↓30.03) 72.68 (↓11.56) 84.24 82.33 (↓1.91) 80.14 (↓4.10)	0.338	9.68 (↓5.67) 12.98 (↓2.37) 15.35 14.85 (↓0.5)	12.58 (\pmu23.13) 22.45 (\pmu13.26) 29.63 (\pmu6.08) 35.71 34.68 (\pmu1.03) 34.16 (\pmu1.55)	0.083 0.338 1.397 5.280 0.833 0.321	$0.76 (\downarrow 3.94)$ $1.85 (\downarrow 2.85)$ $3.28 (\downarrow 1.42)$ 4.7 $4.22 (\downarrow 0.48)$ $3.98 (\downarrow 0.72)$	6.22 (\psi 14.8) 7.33 (\psi 13.69) 15.92 (\psi 5.1) 21.02 18.33 (\psi 2.69) 17.64 (\psi 3.38)	0.083 0.338 1.397 5.280 0.833 0.423
	HOLEF-SN [4]	32x32 64x64 128x128 256x256 SketchyNetV1 SketchyNetV2	9.31 9.31 9.31 9.31 2.22 2.27		75.78 73.96 (\place\tau1.82)	0.096 0.387 1.545 5.758 0.833 0.259	34.32 (\19.09)		0.096 0.387 1.545 5.758 0.833 0.289	9.92 (\(\phi 6.78\) 13.81 (\(\phi 2.89\) 16.70 16.25 (\(\phi 0.45\)	14.12 (\pmu24.78) 24.38 (\pmu14.52) 33.68 (\pmu5.22) 38.90 38.21 (\pmu0.69) 37.88 (\pmu1.02)	0.096 0.387 1.545 5.758 0.833 0.315	$0.86 \ (\downarrow 4.04)$ $2.11 \ (\downarrow 2.79)$ $3.65 \ (\downarrow 1.25)$ 4.9 $4.56 \ (\downarrow 0.34)$ $4.04 \ (\downarrow 0.86)$	6.93 (\psi 14.78) 7.86 (\psi 13.85) 16.32 (\psi 5.39) 21.71 19.92 (\psi 1.79) 18.63 (\psi 3.08)	0.096 0.387 1.545 5.758 0.833 0.417
	Triplet-RL [5]	32x32 64x64 128x128 256x256 SketchyNetV1 SketchyNetV2	22.1 22.1 22.1 22.1 22.2 2.22	21.28 (\downarrow 12.82) 28.83 (\downarrow 5.27) 34.10	28.11 (\$\(\psi 50.71\) 54.71 (\$\\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.577	36.09 (↓20.45) 48.38 (↓8.16) 56.54 55.92 (↓0.62)	32.59 (↓57.02) 57.33 (↓32.28) 77.25 (↓12.36) 89.61 88.20 (↓1.41) 87.31 (↓2.30)	0.577	1.76 (\(\pmu\)2.94\) 3.04 (\(\pmu\)1.66\) 4.12 (\(\pmu\)0.58\) 4.70 4.59 (\(\pmu\)0.11\) 4.51 (\(\pmu\)0.19	3.88 (↓6.47) 6.79 (↓3.56) 9.05 (↓1.30) 10.35 10.21 (↓0.14) 9.89 (↓0.46)	0.142 0.577 2.299 6.041 0.833 0.308	- - - - -	- - - - -	-
	Style VAE [6]	32x32 64x64 128x128 256x256 SketchyNetV1 SketchyNetV2	25.37 25.37 25.37 25.37 2.22 2.27		57.71 (\(\pm24.12\)) 70.06 (\(\pm11.77\)) 81.83 79.63 (\(\pm2.20\))	0.508	4.4	91.14 88.95 (\(\pm\)2.19)	0.125 0.508 2.024 5.642 0.833 0.281	12.46 (\downarrow 7.16) 17.15 (\downarrow 2.47) 19.62 19.48 (\downarrow 0.12)	16.25 (\pmu29.53) 29.62 (\pmu16.16) 38.84 (\pmu6.94) 45.78 44.02 (\pmu1.76) 43.57 (\pmu2.21)	0.125 0.508 2.024 5.642 0.833 0.304	- - - -	-	-
	Partial-OT [7]	32x32 64x64 128x128 256x256 SketchyNetV1 SketchyNetV2	22.1 22.1 22.1 22.1 22.1 2.22 2.27	-	- - - -	-	- - - -	- - - - -	- - - - -	- - - -	- - - -	- - - -	12.32 (\(\pm\)11.84) 19.61 (\(\pm\)4.55) 24.16	53.92 51.29 (\(\pm\)2.63)	
es	B-BFR B-DRS B-Crop B-Regress [8]	224x224 Dynamic Dynamic	4.61 9.36 4.92 2.27	24.32 25.12 20.32 22.82	61.23 68.84 52.12 61.33	2.602 5.493 6.562	43.39 44.78 35.07 38.42	76.33 78.14 57.68	2.602 6.187 6.597	10.47 11.87 08.27	24.34 26.58 20.19	2.602 6.245 6.629	2.15 3.86 1.98	11.61 17.63 09.67	2.602 6.291 6.688
Baselin	B-Regress [8] B-AKD [9] B-PKT [10] B-VGG16-SN	Dynamic Dynamic 256x256	2.27 2.27 14.71	23.67 24.31 33.03	64.26 65.91 78.51	0.268 0.259 40.18	38.61 42.68 52.16	71.88 73.66 84.08	0.295 0.288 40.18	12.67 12.27 18.61	27.71 28.31 41.25	0.331 0.317 40.18	2.91 3.45 5.16	14.01 16.22 23.62	0.392 0.372 40.18
	B-ThiNet [11] B-Prune [12]	256x256 256x256 SketchyNetV2	8.32 6.17		22.34 (\$\sqrt{56.17}) 17.32 (\$\sqrt{61.19})	9.342	12.31 (\pm\39.85) 7.98 (\pm\44.18)	26.63 (\$\sqrt{57.45}\$) 19.82 (\$\sqrt{64.26}\$) 82.21 (\$\sqrt{1.87}\$)	9.342 8.138 0.283	$3.16 (\downarrow 15.45)$ $1.45 (\downarrow 17.16)$	12.73 (\pmu28.52) 8.22 (\pmu33.03) 38.66 (\pmu2.59)		$0.65 (\downarrow 4.51)$ $0.53 (\downarrow 4.63)$ $4.69 (\downarrow 0.47)$	5.35 (\pm18.27) 4.97 (\pm18.65) 21.76 (\pm1.86)	9.342 8.138 0.407

Analysis

Exemplary sketch rendered in different input resolutions.

 Adaptive Canvas Selector provides a tradeoff between performance and computation.

128 x 128

256 x 256

64 x 64

32 x 32

Ablative Study

- Ablation on different objective functions.
- Ablation on different backbones.
- Ablation on different sketch encoders for canvassize selection.

	Туре	FLOPs Params		ShoeV2		
- > r -		(G)	(mil.)	Top1 (%)	Top10 (%)	
Ø	B-VGG16-SN	40.18	14.71	33.03	78.51	
I II III	w/o rank ⁻¹ -reward w/o $\mathcal{L}_{\text{Tri}}^{R}$ -reward w/o \mathcal{L}_{F} -reward	0.173 0.182 0.833	2.27	25.31 27.78 32.91	64.36 69.32 78.39	
IV V	ResNet18 backbone EfficientNet backbone	1.451 0.459	11.18 4.01	26.72 29.47	68.18 72.04	
VI VII VIII IX	Image-based ψ_C Offset s_v Decoder-LSTM Decoder-Tf	5.730 0.255 0.268 0.314	7.62 2.27 2.25 2.34	32.21 32.61 31.41 31.98	77.68 78.40 77.32 78.02	
	SketchyNetV2	0.254	2.27	32.77	78.21	

Ablative Studies

Ablation on the performance of SOTA strategies with different input resolutions.

Canvas		Triplet-SN	-	Triplet-RL				
Size	Top1 (%)	Top10 (%)	FLOPs (G)	Top1 (%)	Top10 (%)	FLOPs (G)		
32×32	10.91	26.65	0.083	12.97	31.08	0.142		
64×64	19.04	48.12	0.338	22.96	56.23	0.577		
128×128	26.07	63.87	1.397	30.04	72.95	2.299		
256×256	28.74	71.68	5.280	34.21	77.24	6.041		

Ablation on the performance of different backbones as student-teacher pairs.

MobileNetV2		Efficie	entNet	ResNet-18		
Top-1	FLOPs	Top-1	FLOPs	Top-1	FLOPs	
					1.451G 1.452G	
	Top-1 32.77%	Top-1 FLOPs 32.77% 0.254G	Top-1 FLOPs Top-1 32.77% 0.254G 29.47%	Top-1 FLOPs Top-1 FLOPs 32.77% 0.254G 29.47% 0.459G	Top-1 FLOPs Top-1 FLOPs Top-1 32.77% 0.254G 29.47% 0.459G 26.72%	

Thank You Sketch

http://sketchx.ai

For more such works, visit: aneeshan95.github.io