

Multi-Granularity Class Prototype Topology Distillation for Class-Incremental Source-Free Unsupervised Domain Adaptation

Peihua Deng^{1,5}*, Jiehua Zhang², Xichun Sheng³, Chenggang Yan¹†, Yaoqi Sun¹, Ying Fu⁴, Liang Li^{5†} ¹Hangzhou Dianzi University, ²Xi'an Jiaotong University, ³Macao Polytechnic University ⁴Beijing Institute of Technology, ⁵Institute of Computing Technology, Chinese Academy of Sciences *This work is done during the intern in VIPL group, ICT, CAS. †Corresponding author.

Contact if interested: peihuadeng@hdu.edu.cn

Code: https://github.com/dengpeihua/GROTO

Labeled Source Data Unlabeled Target Data (Incremental Target Classes) Source Data

An illustration of the CI-SFUDA problem

Contribution

- We explore the Class-Incremental Source-Free Unsupervised Domain Adaptation (CI-SFUDA) problem, and propose the Multi-Granularity Class PROtotype TOpology Distillation (GROTO) algorithm.
- We design the multi-granularity class prototype selforganization module to mitigate the interference from similar source-class knowledge to the target-class representation learning.
- We design the prototype topology distillation module to reduce the shocks of new target knowledge to old ones.

Class-Incremental on Target Domain Unlabeled Transformer Target Domain Encoder G. MLP Head C Source Positive-class Prototypes Hybrid Knowledge-driven Positive Class Mining Positive-class Target Feature Self-organization Prototype Alignment Class Accumulation Target Positive-class Prototypes Multi-granularity Class Prototype Self-organization Prototype Topology Distillation

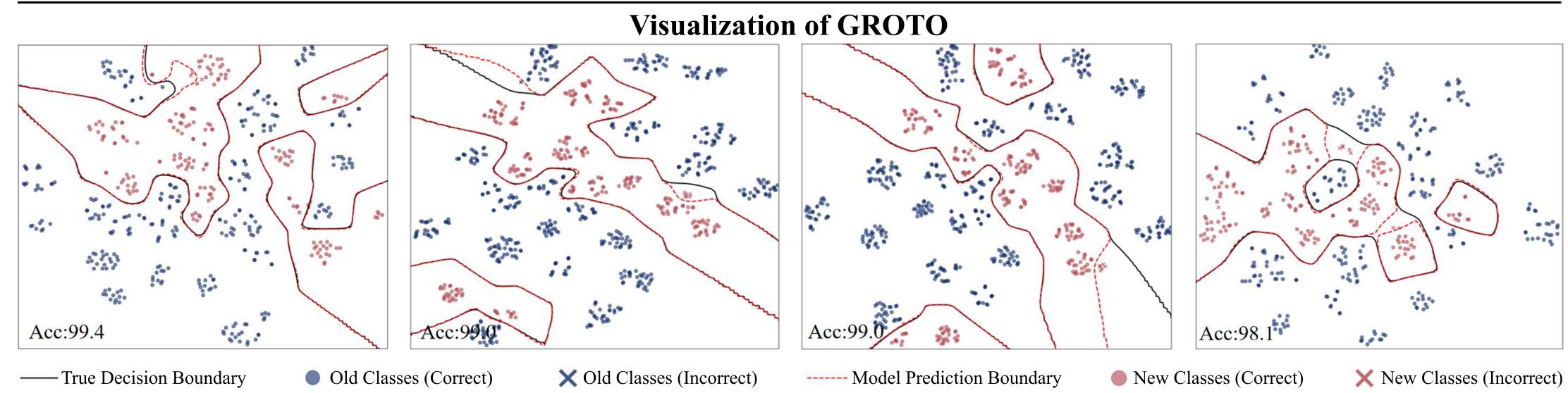
An overview of the GROTO algorithm

Method

- In the Multi-granularity Class Prototype Self-organization module, we mine positive classes of new sessions by modeling source similarity and target probability accumulation distributions, and then generate pseudo-labels for target data by identifying the coarse-grained and fine-grained class prototypes. With these reliable pseudo-labels, we next conduct the target feature self-organization.
- In the Prototype Topology Distillation module. We compute positive class prototypes to construct the topological structures of feature spaces. Then, we perform point-to-point distillation between the source topological structure and the target ones.

Experiments Results on the Office-31-CI and ImageNet-Caltech-CI datasets ImageNet-Caltech-CI Office-31-CI Method $A \rightarrow W$ $W \rightarrow A$ $W\rightarrow D$ $D\rightarrow W$ $D \rightarrow A$ $C \rightarrow I$ Avg. ViT-B 83.1 87.4 78.6 75.1 59.2 CIDA* (ECCV20) 69.3 87.8 ProCA-B (ECCV22) 98.3 76.5 PLUE (CVPR23) 74.6 85.7 82.4 76.0 76.5 85.0 68.0 TPDS (IJCV23) 74.6 90.3 LCFD (Arxiv24) 62.2 DIFO (CVPR24) 80.2 91.7 80.3 76.3 89.3 89.2 53.0 98.1 LEAD-B (CVPR24) GROTO (Ours) 99.0 81.3 99.0 81.3 92.5 93.0 85.1 98.1

	Results on the Office-Home-CI dataset															
Method	U	CI	SF	A→C	$A \rightarrow P$	$A \rightarrow R$	C→A	C→P	C→R	$P \rightarrow A$	P→C	$P \rightarrow R$	$R{\rightarrow}A$	R→C	$R \rightarrow P$	Avg
ViT-B	Х	X	Х	53.2	77.7	82.1	69.1	76.6	78.7	67.8	50.8	82.1	73.0	50.2	81.8	70.3
CIDA* (ECCV20)	X	✓	✓	32.2	45.9	49.1	36.5	48.6	46.6	51.6	33.5	59.0	64.0	38.0	65.1	47.5
ProCA-B (ECCV22)	/	✓	X	60.5	88.0	92.9	83.3	89.7	91.0	81.7	57.1	94.1	86.9	55.8	92.9	81.2
PLUE (CVPR23)	/	X	✓	28.8	67.9	72.5	60.5	67.5	73.4	59.6	29.2	74.2	61.2	37.6	72.6	58.8
TPDS (IJCV23)	/	X	✓	40.5	63.5	69.0	64.7	67.3	68.7	63.8	40.8	71.5	68.2	29.4	65.8	59.4
DIFO (CVPR24)	/	X	✓	44.7	62.6	61.5	54.1	59.8	61.6	53.7	37.6	65.2	58.4	43.3	57.5	55.0
LEAD-B (CVPR24)	✓	X	✓	33.9	81.8	86.9	76.1	82.4	84.8	74.0	19.2	87.3	79.7	15.2	84.3	67.1
LCFD (Arxiv24)	✓	X	✓	54.7	72.2	79.6	67.7	72.3	76.6	67.2	52.6	79.6	71.5	55.3	76.3	68.8
GROTO (Ours)	✓	✓	✓	65.7	86.4	89.7	85.8	86.3	90.0	86.0	67.1	90.1	86.9	66.2	89.3	82.5



• Experiments on three benchmark datasets and the visualizations show that our GROTO algorithm outperforms current state-of-the-art methods.