

Focusing on Tracks for Online Multi-Object Tracking

Kyujin Shim, Kangwook Ko, YuJin Yang Changick Kim

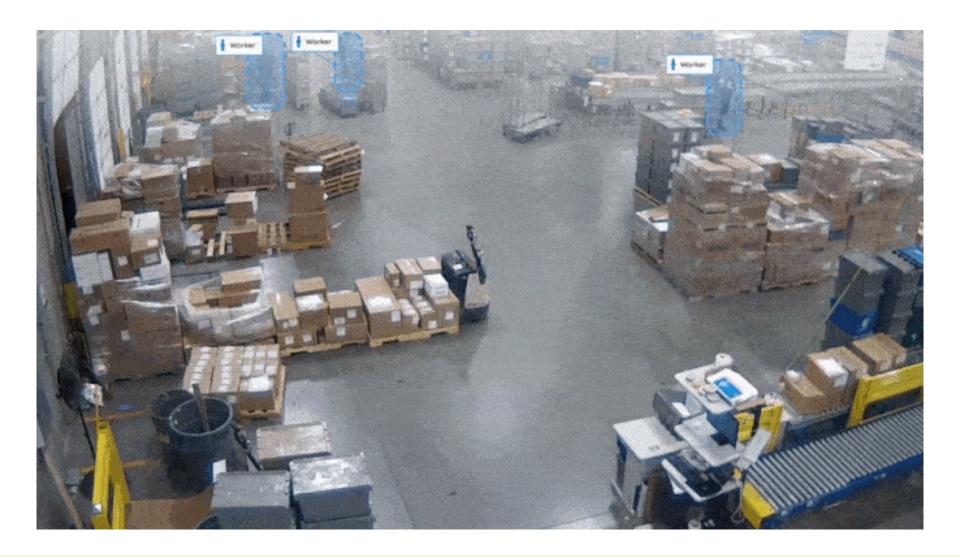
Computational Intelligence Lab.

Korea Advanced Institute of Science and Technology (KAIST) 2025/06/14

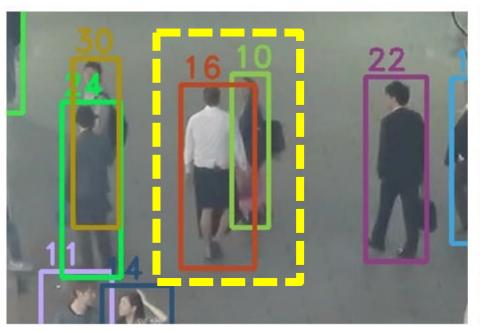
Introduction

Multi-object Tracking

Tracking multiple objects in single camera

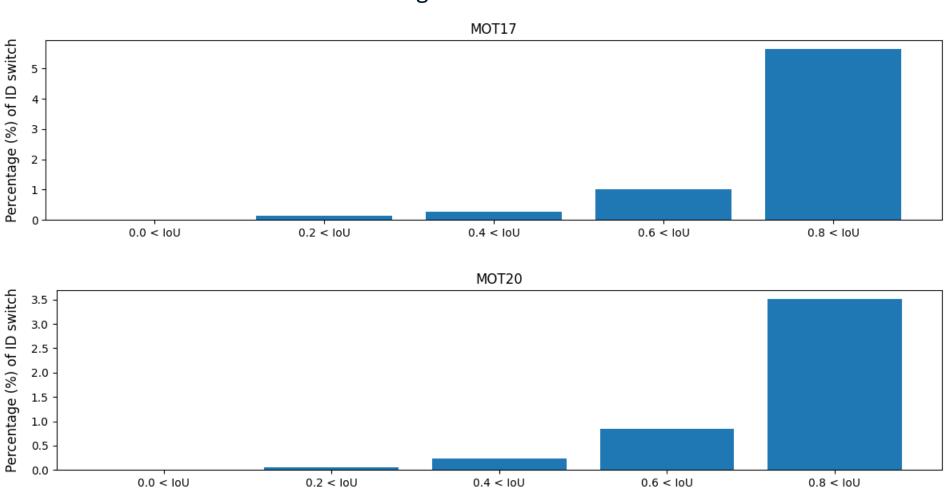


Multi-object Tracking


Multi-object Tracking

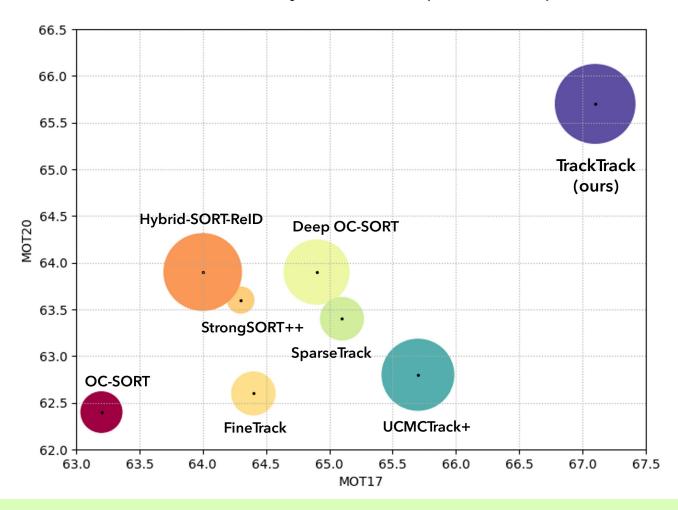
Challenges

- Occlusion can make detector to miss objects and cause ID changes
- It is critical factor for the performance degradation in MOT



Comments from Proposals

Effect of occlusions on ID change

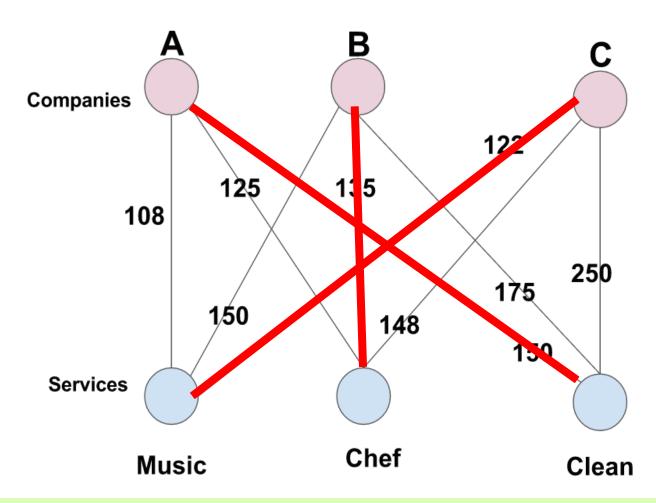


Method

TrackTrack

Track-Focused Online Multi-Object Tracker (TrackTrack)

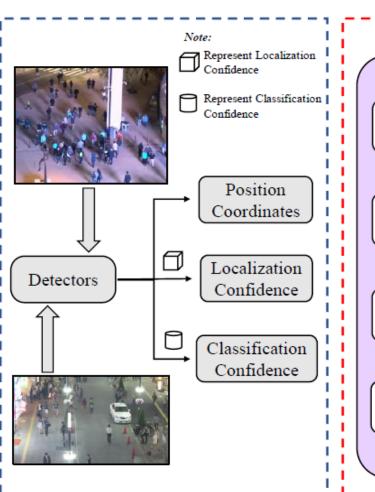
TrackTrack

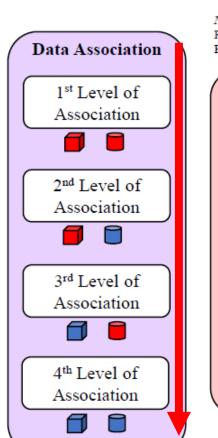

- Track-Perspective-Based Association (TPA)
 - Assignment: We prioritize local matching precision
 - Association Stage: We association through joint and single stage scheme

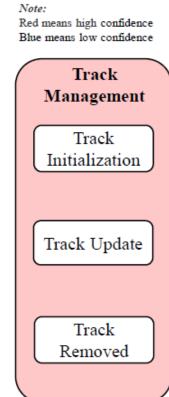
- Track-Aware Initialization
 - Track Initialization: We exclude detection results that significantly overlap with active tracks and other more confident detection results

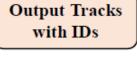
Assignment

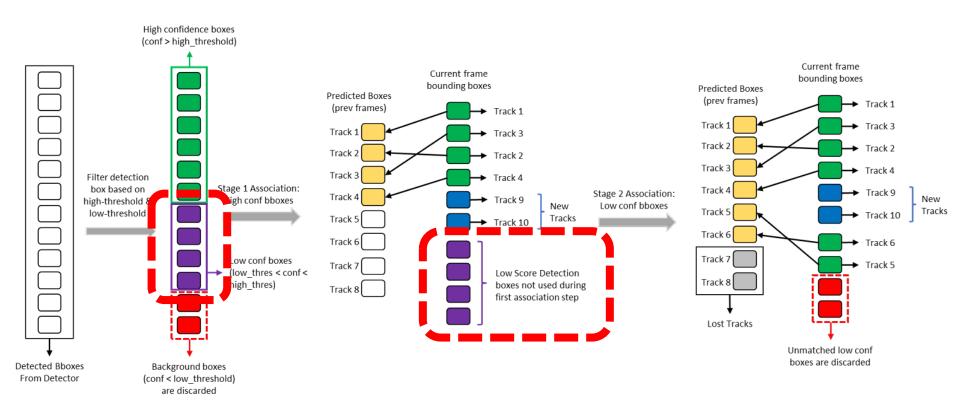
Hungarian Algorithm

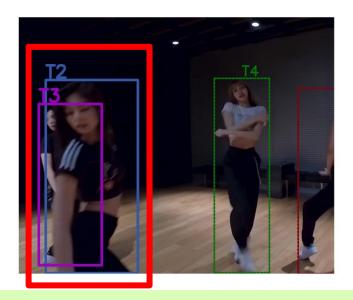

Assignment

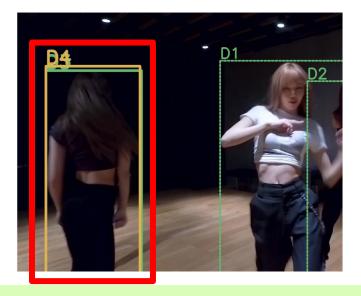

Hungarian Algorithm




Association Stage




Association Stage



Association Stage

Frame t₁ Frame t₂ Frame t₃

Track-Perspective-Based Association

- D_{high} : High-confidence detection results
- D_{low} : Low-confidence detection results
- D_{del_high} : High-confidence deleted detection results by NMS

$$C_{ij} = \begin{cases} d(T_i, d_j), & d_j \in \mathcal{D}_{high} \\ d(T_i, d_j) + \tau_p, & d_j \in \mathcal{D}_{low} \\ d(T_i, d_j) + \tau_q, & d_j \in \mathcal{D}_{del_high} \end{cases}$$

Track-Perspective-Based Association

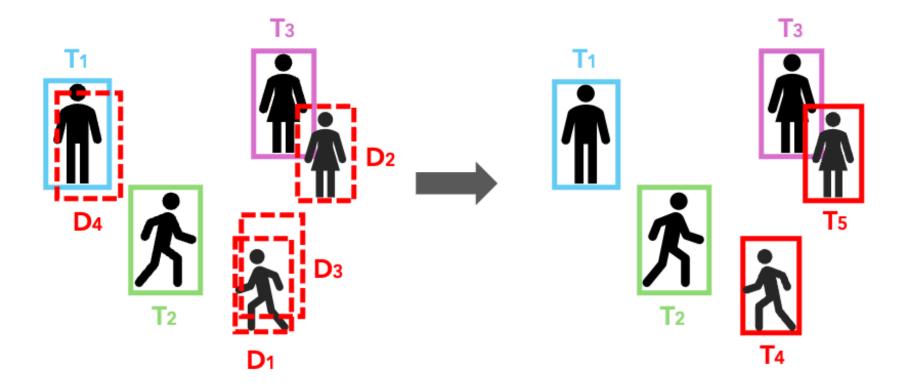
Match

$$\mathcal{M} = \{ (T_i, d_j) | T_i = \underset{T_l \in \mathcal{T}}{\operatorname{arg \, min}} C_{lj}, d_j = \underset{d_k \in \mathcal{D}}{\operatorname{arg \, min}} C_{ik}, C_{ij} < \tau_m \},$$

Exclude matched pairs

$$\mathcal{T}' = \mathcal{T} \setminus \{T_i \mid (T_i, d) \in \mathcal{M}\}$$

$$\mathcal{D}' = \mathcal{D} \setminus \{d_j \mid (T, d_j) \in \mathcal{M}\}\$$



Track-Aware Initialization

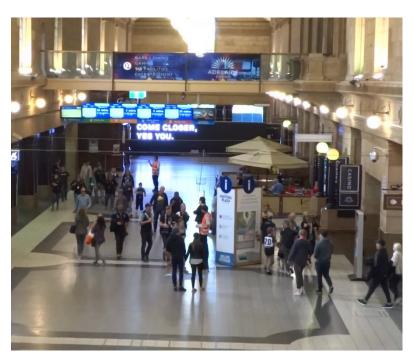
Track-Aware Initialization

Experiments

Datasets

MOT17

- Seven sequences each for training and testing
- Recorded in unconstrained environments



Datasets

MOT20

- Four videos for each training and testing
- Highly crowed scenes

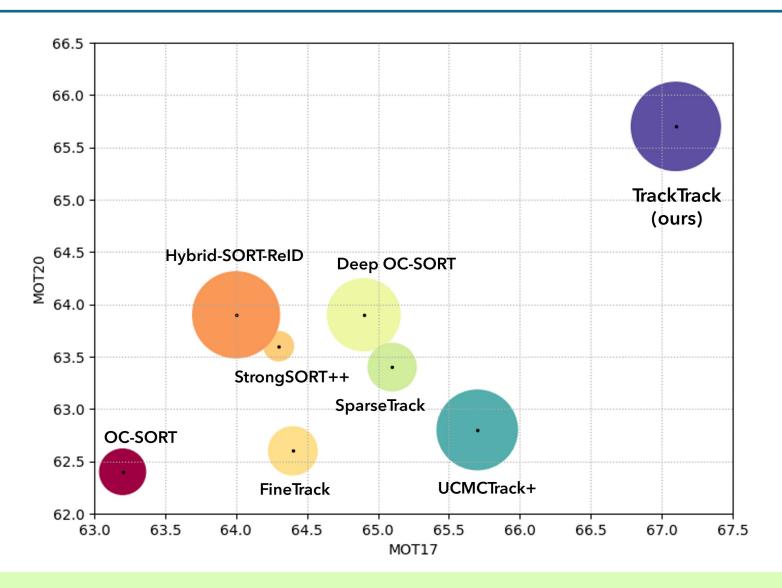
Datasets

DanceTrack

- 100 group dance videos
- 40 training videos, 25 validation videos, and 35 test videos

Quantitative Results

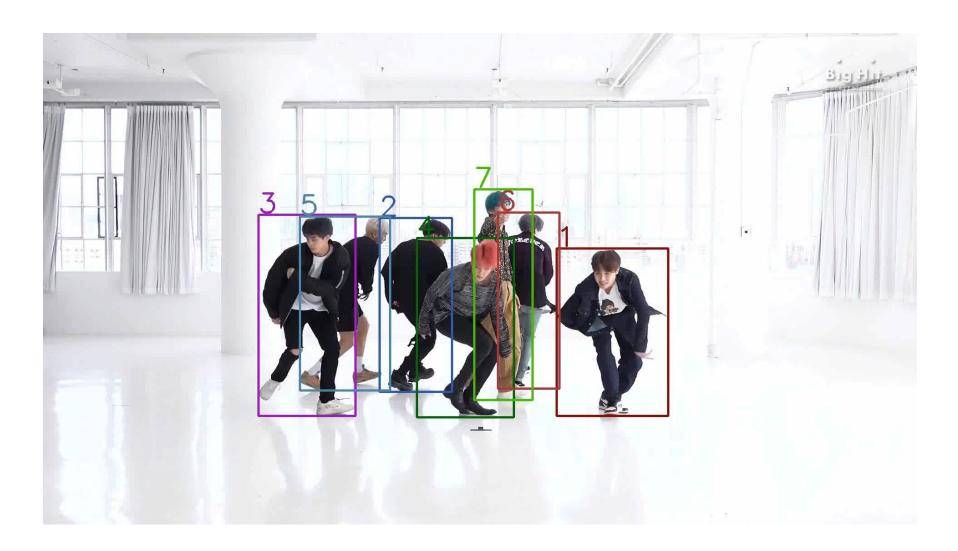
MOT17					MOT20					
Tracker	НОТА↑	IDF1↑	MOTA↑	AssA↑	Tracker	НОТА↑	IDF1↑	MOTA↑	AssA↑	
Offline-Based					Offline-Based					
SUSHI [7]	66.5	83.1	81.1	67.8	SUSHI [7]	64.3	79.8	74.3	67.5	
CoNo-Link [13]	67.1	83.7	82.7	67.8	CoNo-Link [13]	65.9	81.8	77.5	68.0	
Online-Based					Online-Based					
Hybrid-SORT-ReID [51]	64.0	78.7	79.9	63.5	StrongSORT++ [11]	62.6	77.0	73.8	64.0	
FineTrack [32]	64.3	79.5	80.0	64.5	UCMCTrack+ [52]	62.8	77.4	75.6	63.5	
StongSORT++ [11]	64.4	79.5	79.6	64.4	DeconfuseTrack [17]	63.3	77.6	78.1	62.7	
Deep OC-SORT [26]	64.9	80.6	79.4	65.9	DATrack [27]	63.4	77.4	77.8	62.9	
DeconfuseTrack [17]	64.9	80.6	80.4	65.1	SparseTrack [24]	63.4	77.3	78.2	62.8	
SparseTrack [24]	65.1	80.1	81.0	65.1	FineTrack [32]	63.6	79.0	77.9	63.8	
DATrack [27]	65.4	80.4	81.4	65.4	Deep OC-SORT [26]	63.9	79.2	75.6	65.7	
CMTrack [40]	65.5	81.5	80.7	66.1	Hybrid-SORT-ReID [51]	63.9	78.4	76.7	64.5	
AdapTrack [41]	65.7	82.3	79.9	66.9	ImprAsso [42]	64.6	78.8	78.6	64.6	
UCMCTrack+ [52]	65.7	81.0	80.6	66.4	PIA [43]	64.7	79.0	78.5	64.9	
PIA [43]	66.0	81.1	82.2	65.8	CMTrack [40]	64.8	79.9	76.2	66.7	
ImprAsso [42]	66.4	82.1	82.2	66.6	AdapTrack [41]	65.0	80.7	75.0	67.8	
TrackTrack (Ours)	67.1	83.1	81.8	68.2	TrackTrack (Ours)	65.7	80.9	78.0	67.3	



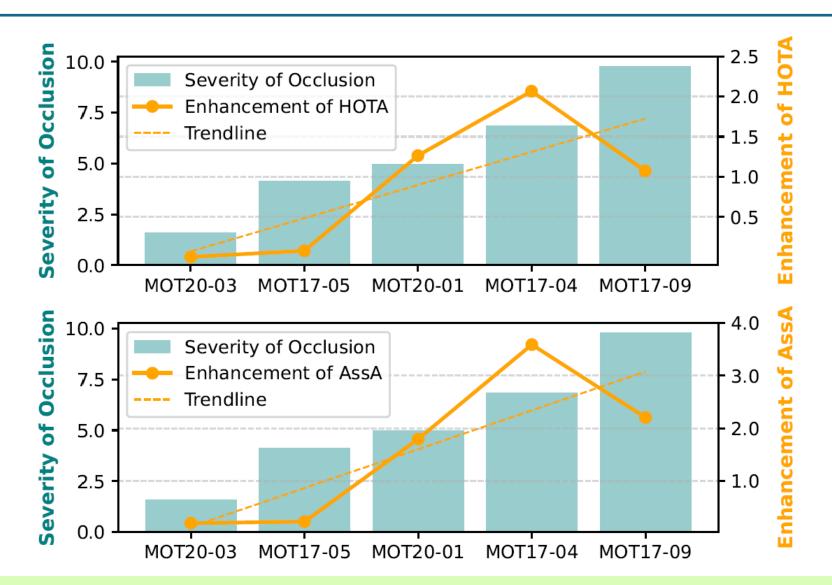
Quantitative Results

DanceTrack									
Tracker	HOTA↑	IDF1↑	MOTA↑	AssA↑					
Offline-Based									
SUSHI [7]	63.3	63.4	88.7	50.1					
CoNo-Link [13]	63.8	64.1	89.7	50.7					
Online-Based									
FineTrack [32]	52.7	59.8	89.9	38.5					
OC-SORT [6]	55.1	54.6	92.0	38.3					
SparseTrack [24]	55.5	58.3	91.3	39.1					
StrongSORT++ [11]	55.6	55.2	91.1	38.6					
GHOST [38]	56.7	57.7	91.3	39.8					
CBIoU [50]	60.6	61.6	91.6	45.4					
Deep OC-SORT [26]	61.3	61.5	92.3	45.8					
CMTrack [40]	61.8	63.3	92.5	46.4					
UCMCTrack+ [52]	63.6	65.0	88.9	51.3					
Hybrid-SORT-ReID [51]	65.7	67.4	91.8	-					
TrackTrack (Ours)	66.5	67.8	93.6	52.9					

Quantitative Results



Qualitative Results



Qualitative Results

Effectiveness Under Occlusion Conditions

Thank you