

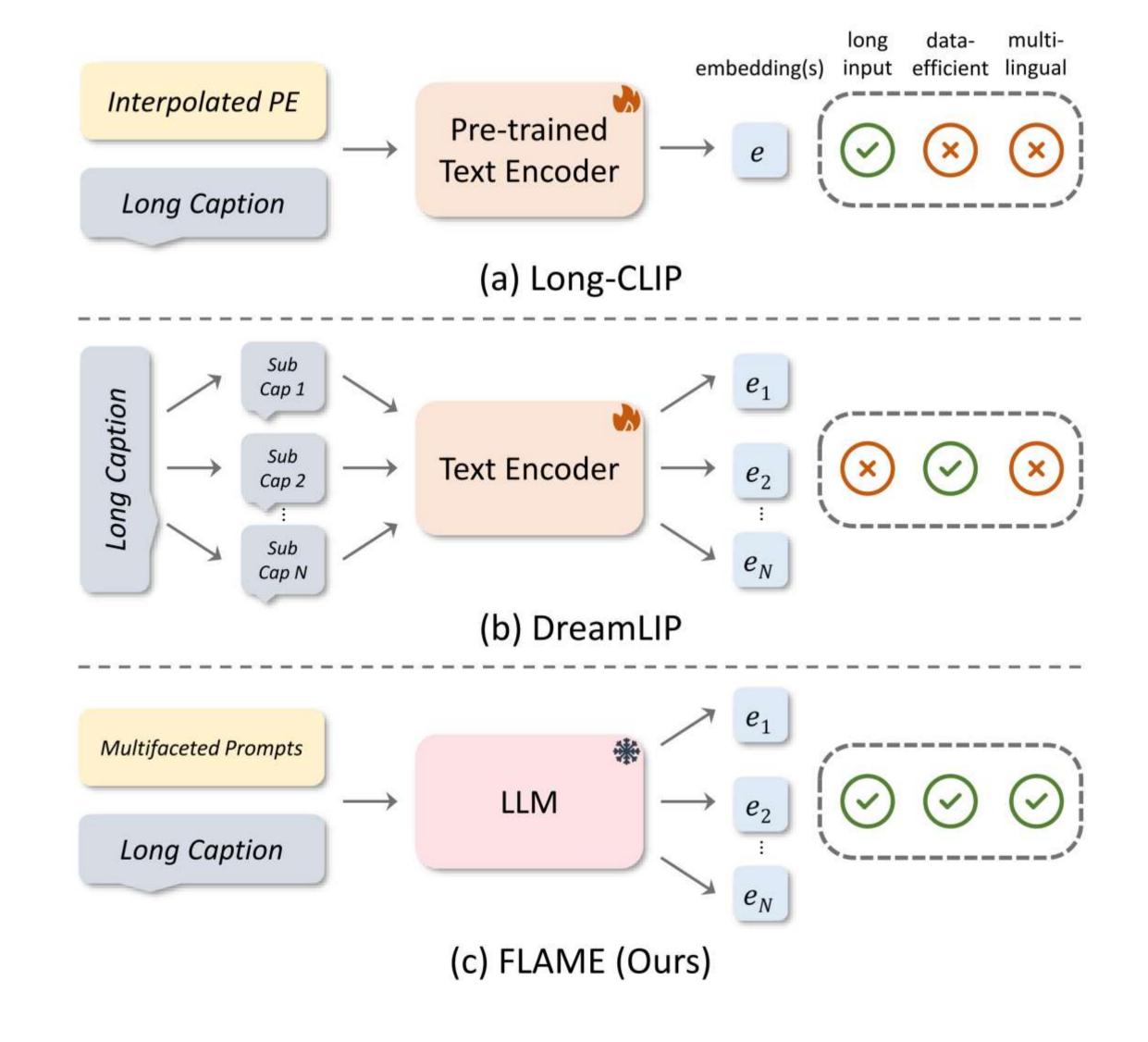
FLAME: Frozen Large Language Models Enable Data-Efficient Language-Image Pre-training

Anjia Cao¹, Xing Wei¹, Zhiheng Ma^{2,3,4*}

¹School of Software Engineering, Xi'an Jiaotong University

²Shenzhen University of Advanced Technology

³Guangdong Provincial Key Laboratory of Computility Microelectronic

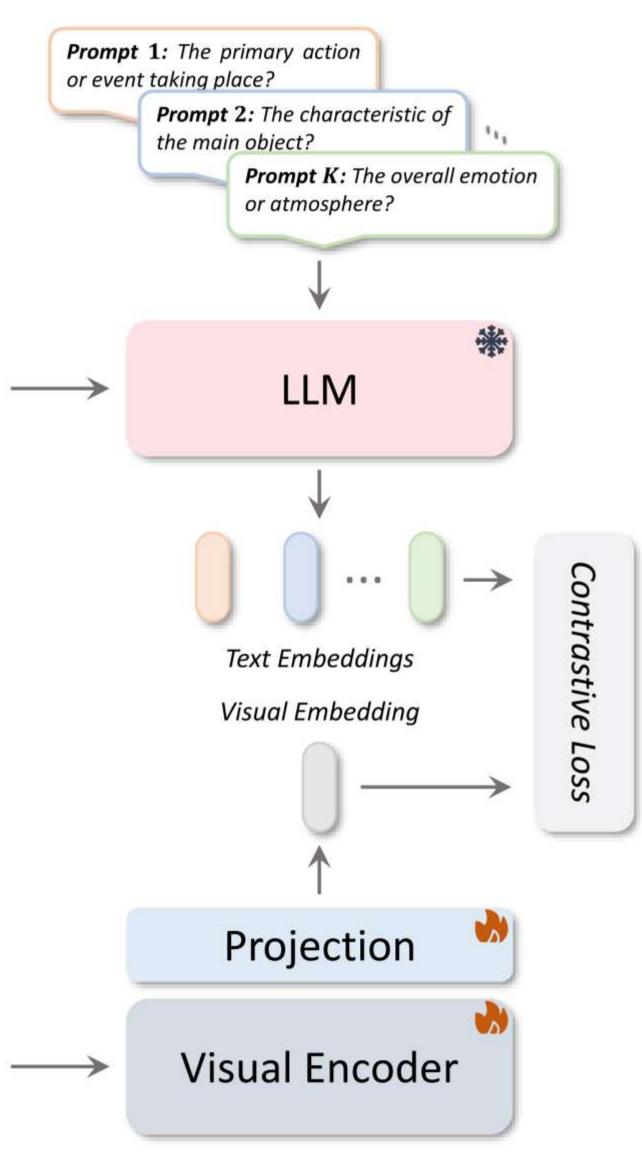

⁴Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

Motivation

Challenges in Language-Image Pre-training

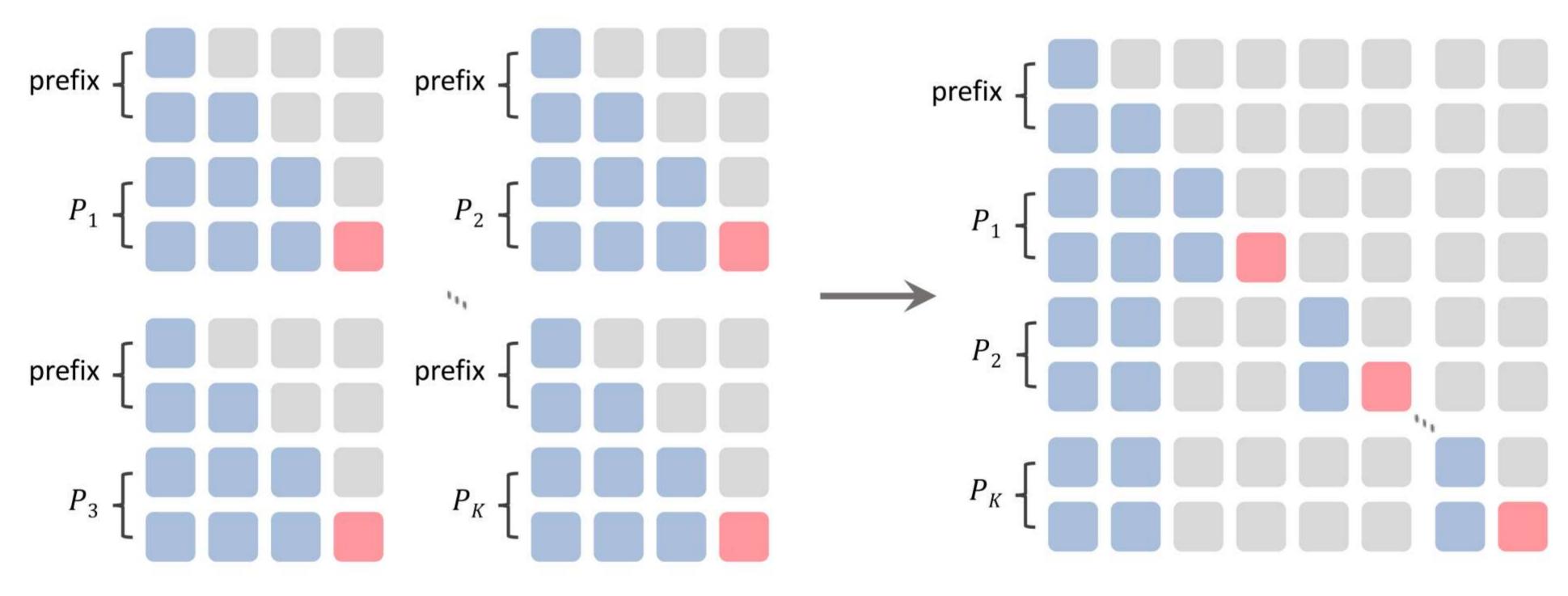
- Data Scarcity: High-quality image-text pairs (e.g., long text, multi-lingual) are rare.
- Constrained Text Input Length: Standard CLIPstyle text encoders choke on long texts (>77 tokens).
- Limitations in Prior Works: Approaches such as long text decomposition and positional encoding interpolation fail to resolve the core limitation imposed by the text encoder's capacity bottleneck.
- Conventional Wisdom: Frozen text encoders lead to suboptimal performance.

Leveraging Frozen LLMs as Text Encoders



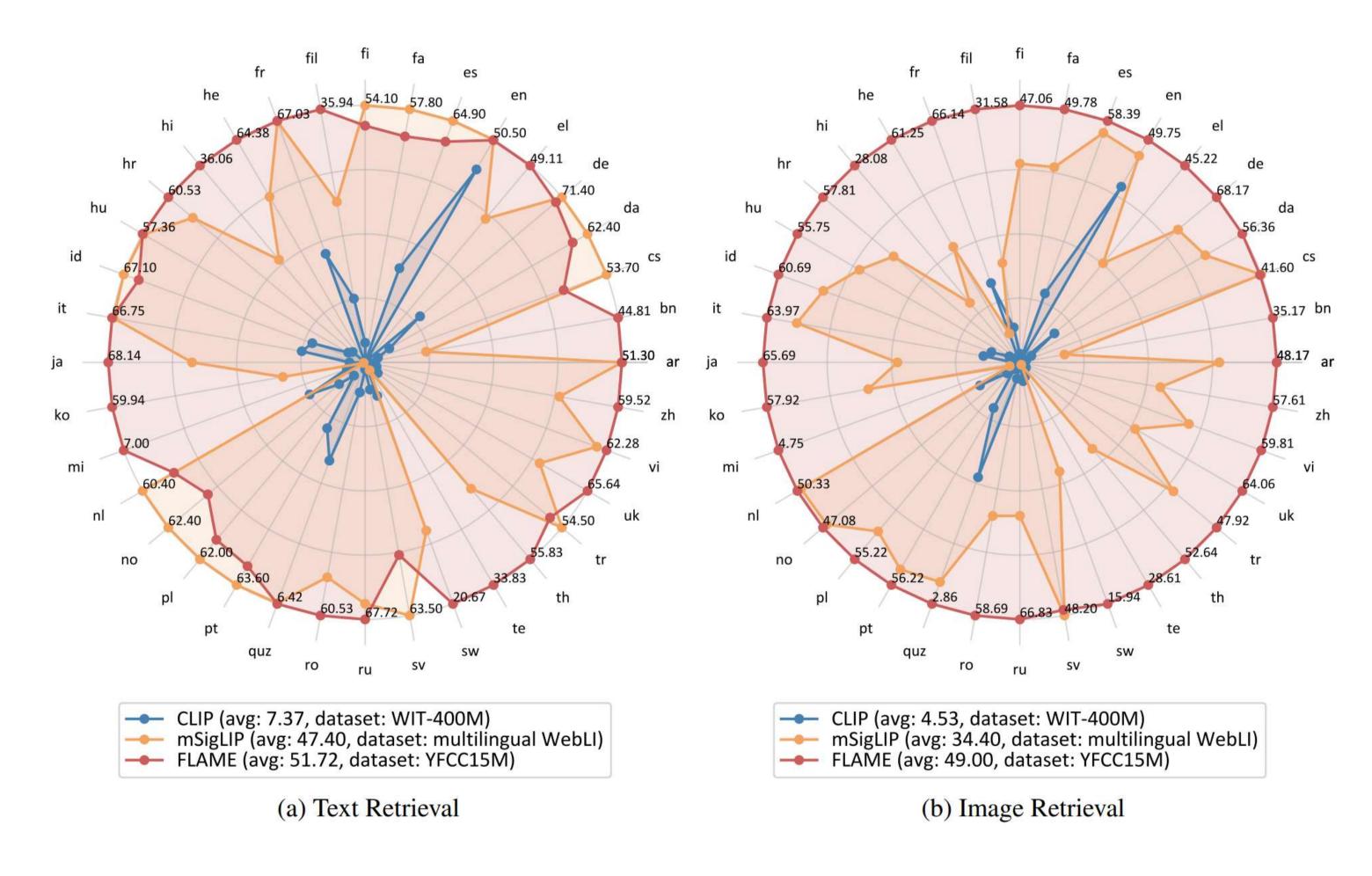
FLAME: Frozen Large Language Models Enable Data-Efficient Language-Image Pre-training

Multifaceted Prompt Distillation


Detailed image description: "In the image, two men are immersed in a musical performance on a stage. The man on the left, donned in a black tank top and blue sunglasses, is engrossed in playing a trumpet. His counterpart on the right, wearing a gray t-shirt, is passionately playing a trombone. They stand before a vibrant backdrop that bursts with colors and text, adding to the lively atmosphere of the event. The image captures a moment of harmony and passion, as music fills the air between the performers and their audience.". After thinking step by step,

- Objective: To capture diverse semantic representations from long captions, aligning better with the multifaceted nature of images.
- Mechanism: Employing a set of structured prompts targeting different semantic levels (e.g., entity, interaction, scene) to guide the frozen LLM in extracting distinct features.

Facet-Decoupled Attention


Number of Inferences: K

Number of Inferences: 1

• Practical Efficiency: A specialized attention mask allowing parallel computation of all prompt embeddings within a single forward pass, utilizing a shared prefix structure. The frozen nature of the LLM enables to pre-compute the text embeddings offline.

Image-Text Retrieval

Multilingual Retrieval

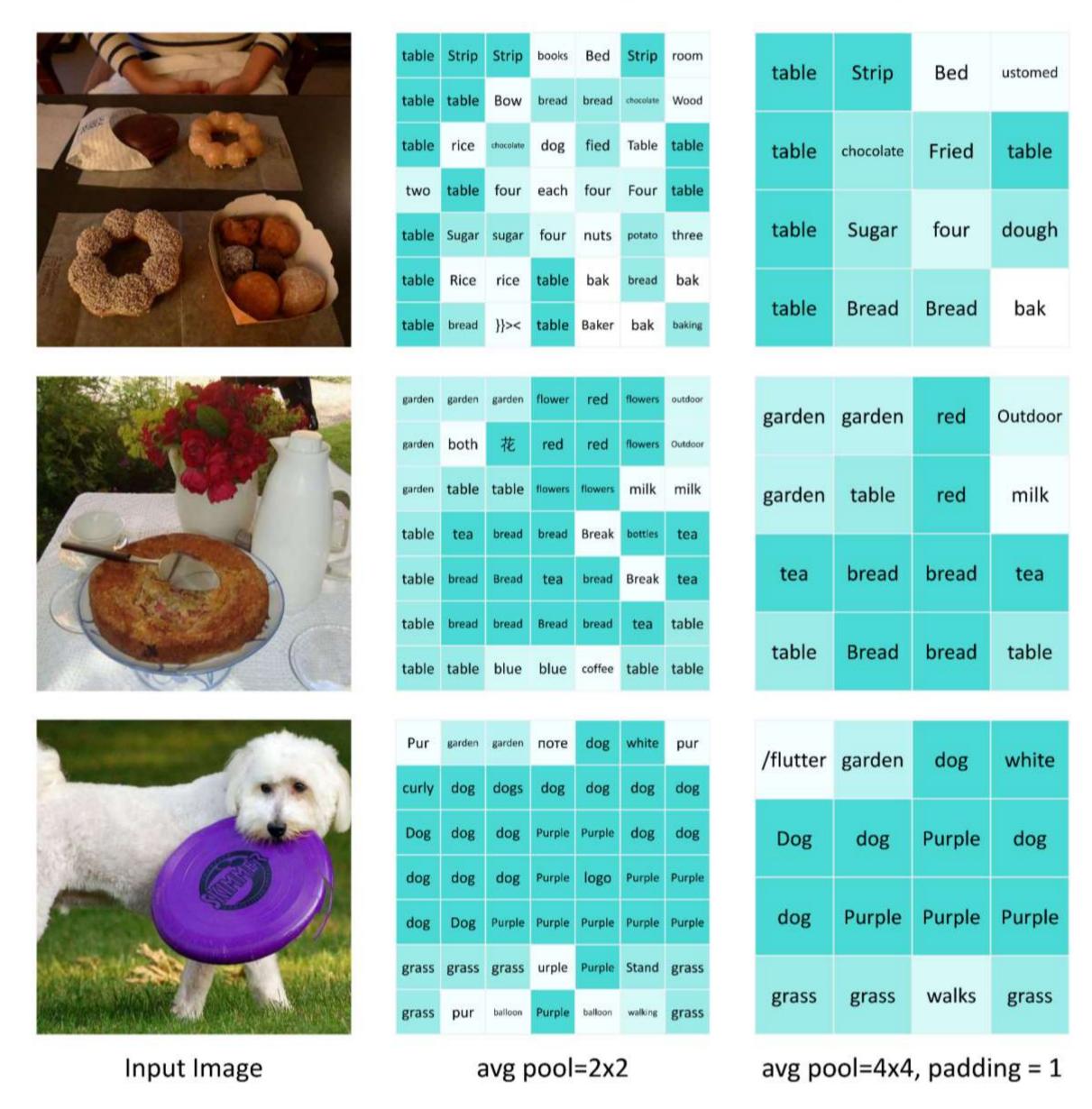
Long-Context Retrieval

		S4V-val		Urba	ın-1k	D	CI	DOCCI-test	
Method	Dataset	I2T	T2I	I2T	T2I	I2T	T2I	I2T	T2I
CLIP [41]	CC3M	21.4	20.2	10.7	9.6	8.3	7.5	8.6	7.0
Long-CLIP [62]	CC3M+S4V	51.3	46.1	15.5	18.5	13.8	14.2	14.7	12.6
FLAME	CC3M	85.6	80.0	65.3	66.6	50.8	49.3	54.5	51.9
CLIP [41]	YFCC15M	57.1	45.9	30.4	23.6	22.0	19.1	26.5	23.3
Long-CLIP [62]	YFCC15M+S4V	77.2	77.6	40.5	46.1	29.4	29.7	35.0	33.5
FLAME	YFCC15M	94.1	93.2	84.0	87.9	66.1	68.1	75.8	76.2
CLIP [41]	WIT-400M	78.2	79.6	67.5	53.3	45.4	43.0	60.7	57.0

Short-Context Retrieval

		Text Retrieval						Image Retrieval						
Dataset	Method	MSCOCO				Flickr30k			MSCOCO			Flickr30k		
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
	CLIP [41]	8.7	23.9	33.7	7.1	19.7	28.6	17.4	37.9	50.1	13.9	30.8	40.5	
CC3M	MLLM-A [36]	35.9	62.4	73.9	63.5	86.6	91.7	26.5	51.1	62.7	49.3	74.8	83.1	
	DreamLIP [63]	39.9	67.2	<u>78.1</u>	66.8	89.6	94.4	29.8	55.2	66.3	<u>50.7</u>	76.7	83.6	
	FLAME	43.3	69.1	78.9	67.3	87.6	93.1	28.6	<u>54.5</u>	65.7	53.6	79.9	87.1	
	CLIP [41]	30.7	56.2	67.4	54.9	80.0	88.4	19.1	40.9	52.5	37.2	64.3	74.3	
YFCC15M	SoftCLIP [16]	30.9	56.2	68.3	56.2	82.1	88.6	19.2	41.2	52.6	37.2	64.3	74.5	
	DreamLIP [63]	55.8	80.7	88.7	84.9	97.3	99.1	42.3	68.9	78.0	65.3	86.7	91.8	
	FLAME	60.5	82.9	89.3	86.4	97.3	98.6	43.9	70.4	79.7	73.3	91.7	95.5	
WIT-400M	CLIP [41]	52.4	76.7	84.7	81.9	96.2	98.8	33.1	58.4	69.0	62.1	85.6	91.8	

More Results


Zero-Shot Classification

Dataset	Method	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	Average	ImageNet
	CLIP [41] LaCLIP [14]	10.6 14.2	53.9 57.1	20.4 27.5	31.2 35.1	1.2 1.6	1.1 1.6	10.4 16.6	11.7 15.6	43.2 52.7	12.9 14.7	19.7 23.7	16.0 21.5
CC3M	MLLM-A [36]	18.7	58.4	32.4	43.8	3.9	1.5	20.2	32.1	63.5	17.5	29.2	25.0
	DreamLIP [63]	19.4	74.3	44.2	45.9	2.8	1.0	17.0	27.1	63.1	14.7	31.0	31.1
	FLAME	32.1	<u>73.6</u>	<u>42.0</u>	56.6	6.7	6.9	43.8	41.2	74.1	26.3	40.3	36.0
	CLIP [41]	35.0	67.1	34.8	42.0	5.1	6.3	13.9	20.4	54.5	44.3	32.3	34.1
YFCC15M	DreamLIP [63]	44.2	89.0	62.0	57.1	9.2	6.4	30.5	32.6	79.8	40.2	45.1	48.2
	FLAME	61.8	86.1	56.7	66.8	10.7	10.3	54.9	40.7	<u>78.9</u>	51.7	51.9	51.5

Linear-Probe Classification

Dataset	Method	Food-101	CIFAR-10	CIFAR-100	Cars	Aircraft	DTD	Caltech-101	Average
CC3M	CLIP [41] LaCLIP [14] MLLM-A [36] DreamLIP [63]	62.6 63.8 64.0 71.2	86.8 87.7 87.7 92.2	68.1 69.5 68.5 74.0	32.8 32.4 34.5 31.5	40.9 42.7 32.1 26.7	63.4 64.0 60.4 70.4	82.0 83.3 85.5 88.5	62.4 63.3 61.8 64.9
YFCC15M	FLAME CLIP [41] HiCLIP [17] DreamLIP [63] FLAME	77.2 81.0 83.6 85.9	90.3 88.5 89.1 96.5 95.0	72.9 66.4 70.4 82.3 81.0	29.0 36.4 41.8 54.3	38.6 25.5 32.3 34.6 39.3	69.7 65.2 68.7 74.3 76.8	89.5 82.4 86.4 91.2 92.5	68.3 62.0 66.3 72.0 75.0

Semantic Interpretability

FLAME: Frozen Large Language Models Enable Data-Efficient Language-Image Pre-training

Key Contributions

- We **challenge the conventional wisdom** about frozen text encoders and demonstrate that frozen LLMs can effectively enhance language-image pre-training.
- We introduce a novel framework that leverages frozen LLMs for data-efficient language-image pretraining via multifaceted prompt distillation.
- We propose a **facet-decoupled attention** mechanism, complemented by an offline embedding strategy, to enhance computational efficiency.
- Extensive experiments validate that FLAME significantly outperforms existing methods in data-scarce scenarios, excelling in **long-context understanding** and **multilingual** tasks.

Thank you!

Project page:

https://github.com/MIV-XJTU/FLAME

For any further questions, please contact us:

<u>caoanjia7@stu.xjtu.edu.cn</u> <u>weixing@mail.xjtu.edu.cn</u> mazhiheng@suat-sz.edu.cn