SplatTouch: Explicit 3D Representation Binding Vision and Touch

Antonio Luigi Stefani, Niccolò Bisagno, Nicola Conci, Francesco de Natale

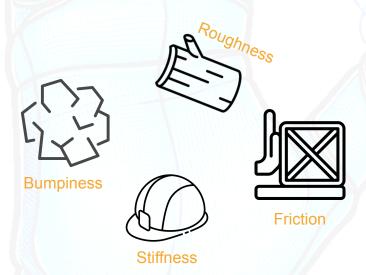
Multimodal VR Applications

Telemedicine

Rehabilitation

Remote object manipulation

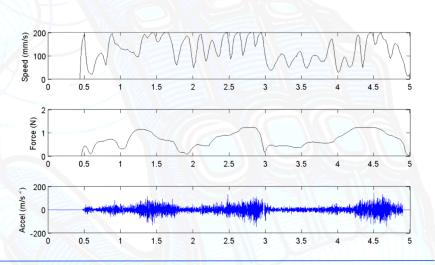
Sport training



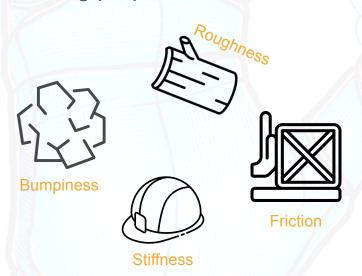
Safety training

Model haptic properties

Adding haptic stimuli to digital environments means modeling the following properties:

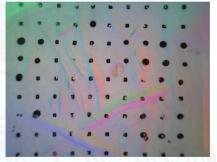

Model haptic properties

Adding haptic stimuli to digital environments means modeling the following properties:

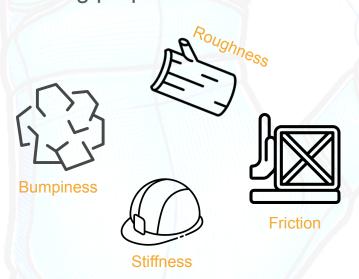

Haptic properties can be sensed by either:

Mono-dimensional signals

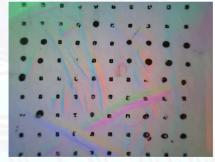
Model haptic properties


Adding haptic stimuli to digital environments means modeling the following properties:

Haptic properties can be sensed by either:


- Mono-dimensional signals
- Vision-based data

Model haptic properties


Adding haptic stimuli to digital environments means modeling the following properties:

Haptic properties can be sensed by either:

- Mone dimensional signals
- Vision-based data

University of Trento

Haptic is still underexplored

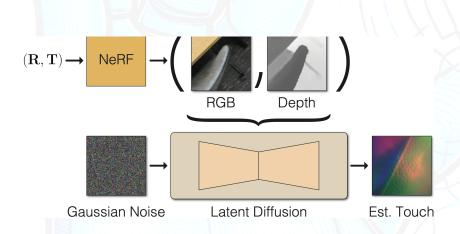
Our aim is to generate haptic data grounded in 3D virtual environments to:

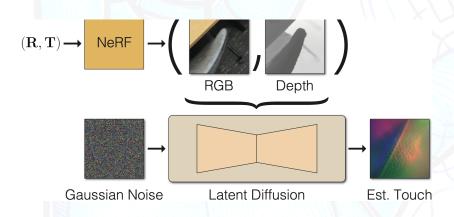
- Increase data availability.
- Improve data quality.
- Develop robust haptic perception models.

Implicit representation

Explicit 3D scene representation

Vision **NOCS** map


Touch



State of the Art: Tactile-Augmented Radiance Field (TaRF)

State of the Art: Tactile-Augmented Radiance Field (TaRF)

Issues:

- Diffusion Models struggles with 3D data → poor scene understanding
- Current 3D contact localization approach retrieves the position of the camera related to haptic maps

Our contribution

Research question:

Is it possible to pass information about 3D scenarios to Diffusion Models?

Our contribution

Research question:

Is it possible to pass information about 3D scenarios to Diffusion Models?

Answer:

Yes, it is possible by mapping 3D information onto images

Our contribution

Research question:

Is it possible to pass information about 3D scenarios to Diffusion Models?

Answer:

Yes, it is possible by mapping 3D information onto images

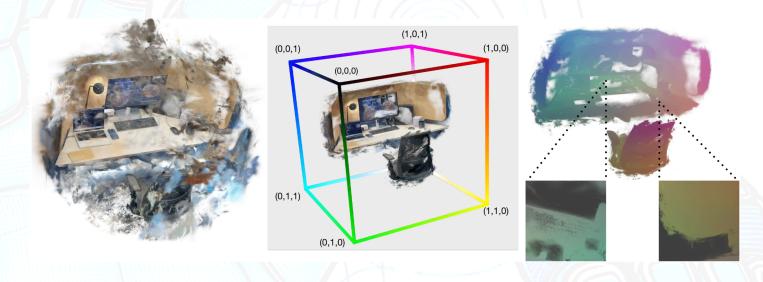
Our contribution is two-folded:

Exploiting NOCS maps as a novel global descriptor of the scene

Our contribution

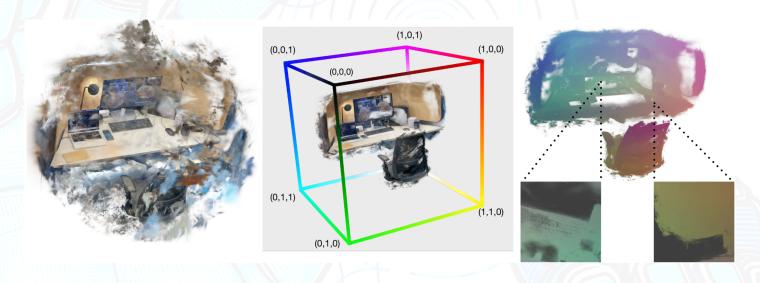
Research question:

Is it possible to pass information about 3D scenarios to Diffusion Models?


Answer:

Yes, it is possible by mapping 3D information onto images

Our contribution is two-folded:


- Exploiting NOCS maps as a novel global descriptor of the scene
- Establishing a novel 3D localization task

Normalized Object Coordinate Space (NOCS)

A normalized coordinate space to estimate object position and size in RGB images, ensuring a uniform, viewpoint-independent representation

Normalized Object Coordinate Space (NOCS)

NeRF is an implicit representation of a 3D scene, which makes it difficult to obtain a NOCS representation. We need to switch to an explicit representation

→ Gaussian Splatting

University of Trento

3D-aware touch generation

TaRF's scene reconstruction using GS and transformation into NOCS

Pairing touch, vision and NOCS

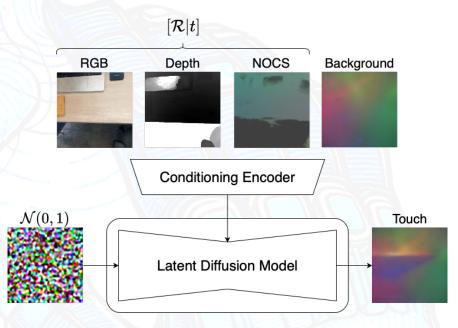
University of Trento

3D-aware touch generation

TaRF's scene reconstruction using GS and transformation into NOCS

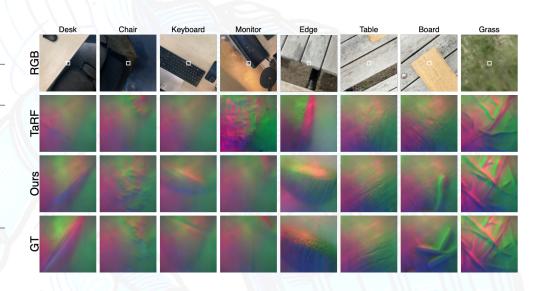
Pairing touch, vision and NOCS

3D-aware touch generation


TaRF's scene reconstruction using GS and transformation into NOCS

Pairing touch, vision and NOCS

Our architecture:


Generation results

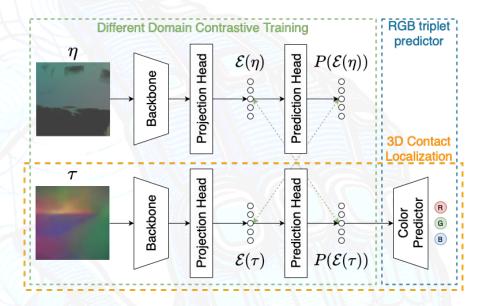
Quantitative

Model	PSNR (↑)	SSIM (↑)	FID (↓)
TaRF	22.84	0.72	28.97
TaRF*	23.88	0.76	15.20
Our	30.19	0.84	10.06

TaRF* → TaRF on the single scene

Qualitative

Novel 3D localization task

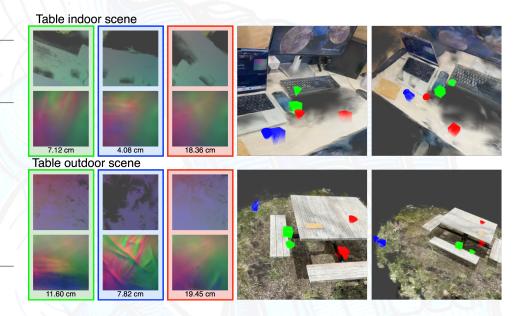

What?

 Estimating the exact position in the 3D scenario given a query haptic map

Why?

 The previous approach estimates the camera's position for the query haptic map, not its exact location.

How? → SimSiam-based framework



3D Localization results

Quantitative

Model	Training data	Distance (cm) (↓)
Random		56.47
RGB+Touch	Real	22.44
NOCS+Touch	Real	13.02
NOCS+Touch	Real+Aug	11.65

Qualitative

Thanks for the attention

antonioluigi.stefani@unitn.it