

NeIn: Telling What You Don't Want

CVPR 2025 Workshop Syntagen

Nhat-Tan Bui¹, Dinh-Hieu Hoang², Quoc-Huy Trinh^{3,4}, Minh-Triet Tran², Truong Nguyen⁵, Susan Gauch¹

¹University of Arkansas, USA

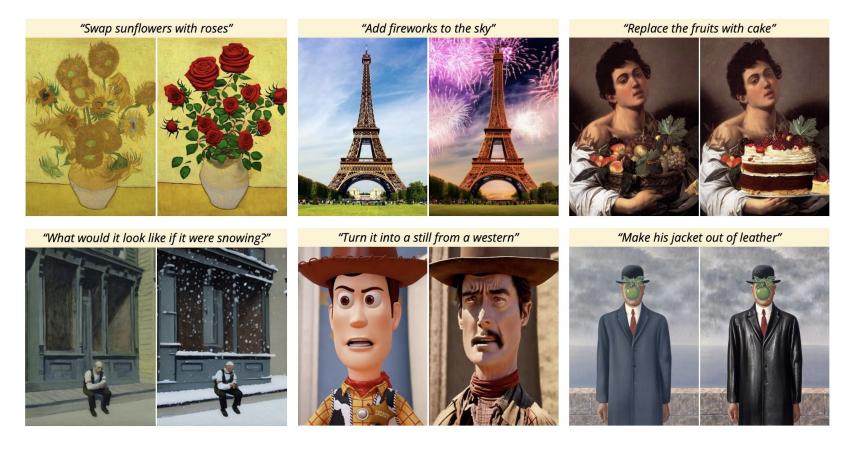
²University of Science, VNU-HCM, Vietnam

³Aalto University, Finland

⁴SpexAI GmbH, Germany

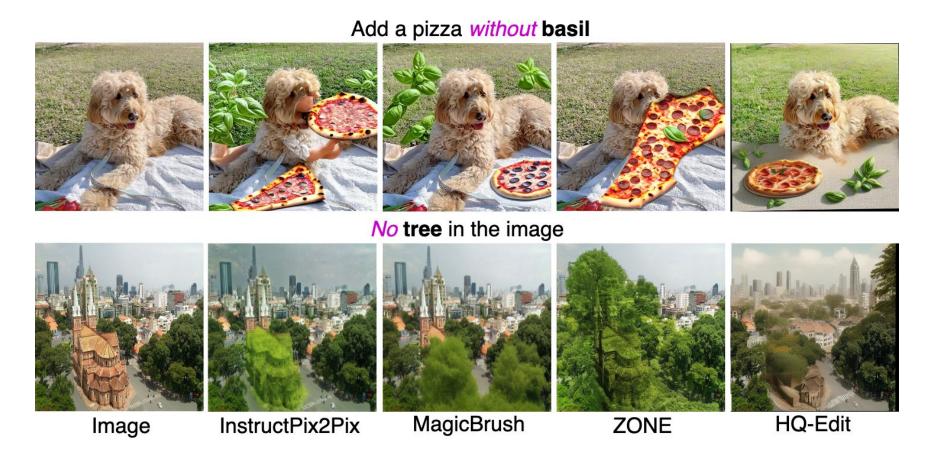
⁵University of California, San Diego, USA

Text-guided Image Editing



Given an image and a textual instruction, the model is able to make appropriate edit based on the instruction.

Negation Understanding



The failures of recent text-guided image editing methods in understanding the negative queries.

Motivation

Datasets	Tasks	Train		Validation		Total	
	Tasks	#Negative	#Al1	#Negative	#A11	#Negative	#A11
CC12M [3]	Pre-training	_	_	_	_	314,181 (2.53%)	12,423,374
LAION-400M [22]	Pre-training	_	_	_	_	2,404,784 (0.58%)	413,862,224
MS-COCO'14 [11]	Image Captioning	1,761 (<mark>0.43%</mark>)	414,113	886 (<mark>0.44%</mark>)	202,654	_	616,767
SBU Captions [17]	Image Captioning	_	_	_	_	26,222 (<mark>2.62%</mark>)	1,000,000
CC3M [23]	Image Captioning	54,219 (1.63%)	3,318,333	_	_	_	3,369,218
CIRR [13]	Composed Image Retrieval	868 (3.08%)	28,225	130 (3.11%)	4,181	_	36,554
InstructPix2Pix[1]	Image Editing	77 (<mark>0.02%</mark>)	313,010	_	_	_	313,010
MagicBrush [28]	Image Editing	54 (0.61%)	8,807	6 (1.17%)	528	-	10,388

Statistic of captions in current image-caption pair datasets. The number of negative sentences in those datasets is very small.

We need a dataset specifically for **negation understanding** in **vision-language tasks**.

Contributions

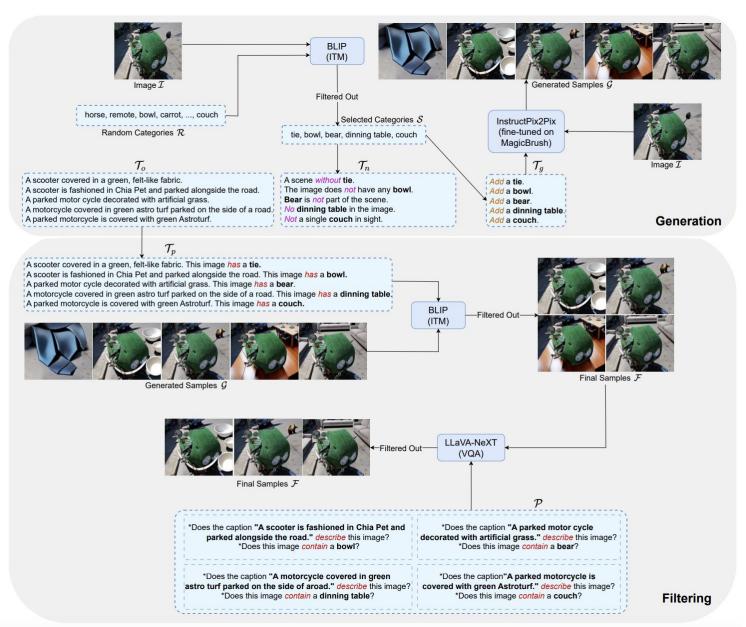
- 1. We investigate the ability of VLMs to **interpret negation cues** in text-guided image editing, leading to the creation of the first large-scale vision-language negation dataset for this task, termed **NeIn**.
- 2. We introduce a **pipeline** to generate NeIn, an extensive dataset comprising **366,957** quintuplets. This dataset focuses on the understanding of negation, a fundamental linguistic concept, for image editing VLMs.
- 3. We propose an **evaluation method** for negation understanding that can be used by future researchers. Using our evaluation method, we observe that VLMs in image editing task have **difficulty comprehending** negative instructions. This insight opens a new research direction for improving negation understanding for VLMs.

Negative Instruction (NeIn)

We present NeIn, the **first** large-scale vision-language negation dataset for image editing.

It comprises of **366,957** samples with **342,775** queries for training and **24,182** queries for benchmarking.

The creation of NeIn involves two primary stages: **generation** and **filtering**.



Negative Instruction (NeIn)

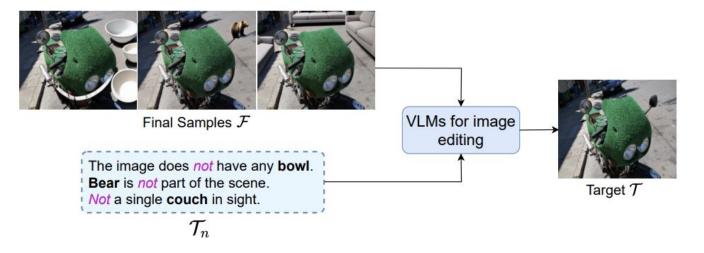


Illustration for fine-tuning and benchmarking process.

Proposed Evaluation Metrics

We consider whether image editing methods:

- 1. Can **eliminate** the object categories *specified* in the negative sentence.
- 2. Can **preserve** the object categories *not mentioned* in the negative sentence.

The first is determined by the **Removal Evaluation**, while the second is assessed using the **Retention Evaluation**.

Since the purpose of both metrics is to identify objects, we consider the visual question answering (VQA) and the open-vocabulary object detection (OVD).

Removal Evaluation

Algorithm 3 Removal Evaluation by VQA

Input:

 \mathcal{T} : considered model's outputs

S: objects to be removed

Output:

s: removal score

```
1: s \coloneqq 0
```

2: **for** each tuple $(\mathcal{T}^{(i)}, \mathcal{S}^{(i)})$ in $(\mathcal{T}, \mathcal{S})$ **do**

pre-defined prompt

3: $p \leftarrow$ "Does this image contain a/an $S^{(i)}$?"

4: **if** $VQA(\mathcal{T}^{(i)}, p) = "No"$ **then** \triangleright Object is removed

5: $s \leftarrow s + 1$

6: **end if**

7: end for

8: $s \leftarrow s/|\mathcal{T}|$

9: **return** s

Algorithm 5 Removal Evaluation by OVD

Input:

 \mathcal{T} : considered model's outputs

S: objects to be removed

Output:

s: removal score

```
1: s := 0
```

2: for each tuple $(\mathcal{T}^{(i)}, \mathcal{S}^{(i)})$ in $(\mathcal{T}, \mathcal{S})$ do

3: $p \leftarrow \text{OVD}(\mathcal{T}^{(i)}, \mathcal{S}^{(i)})$

▶ Prediction list

4: **if** length of p = 0 **then**

▷ Object is removed

5:
$$s \leftarrow s + 1$$

6: end if

7: end for

8:
$$s \leftarrow s/|\mathcal{T}|$$

9: **return** s

Retention Evaluation

```
Algorithm 4 Retention Evaluation by VQA
Input:
\mathcal{F}: samples of NeIn
\mathcal{T}_o: original caption from MS-COCO
T: considered model's outputs
Output:
s: retention score
 1: s := 0
 2: for each tuple (\mathcal{F}^{(i)}, \mathcal{T}_o^{(i)}, \mathcal{T}^{(i)}) in (\mathcal{F}, \mathcal{T}_o, \mathcal{T}) do
          list^1 := [], list^2 := []
           \mathcal{O} \leftarrow \operatorname{extractor}(\mathcal{T}_o^{(i)})
                                                   \triangleright Original objects in \mathcal{I}
           # check O in F
           for each object in \mathcal{O} do
                p \leftarrow "Does this image contain a/an object?"
 6:
                b \leftarrow VQA(\mathcal{F}^{(i)}, p)
                                                            ▶ Boolean result
 7:
                                                   \triangleright Object is still in \mathcal{F}^{(i)}
                if b = "Yes" then
  8:
                     append object to list<sup>1</sup>
 9:
                end if
10:
           end for
11:
           # check \mathcal{O} in both \mathcal{F} and \mathcal{T}
           for each object in list do
12:
                p \leftarrow "Does this image contain a/an object?"
13:
                b \leftarrow VQA(\mathcal{T}^{(i)}, p))
                                                            ⊳ Boolean result
14:
                if b = "Yes" then \triangleright Object is in \mathcal{F}^{(i)} & \mathcal{T}^{(i)}
15:
                      append object to list<sup>2</sup>
16:
                end if
17:
           end for
18:
           score \leftarrow length of list^2 / length of list^1
19:
           s \leftarrow s + score
20:
21: end for
22: s \leftarrow s / |\mathcal{T}|
23: return s
```


Algorithm 6 Retention Evaluation by OVD Input: \mathcal{F} : samples of NeIn \mathcal{T}_o : original caption from MS-COCO

Output:

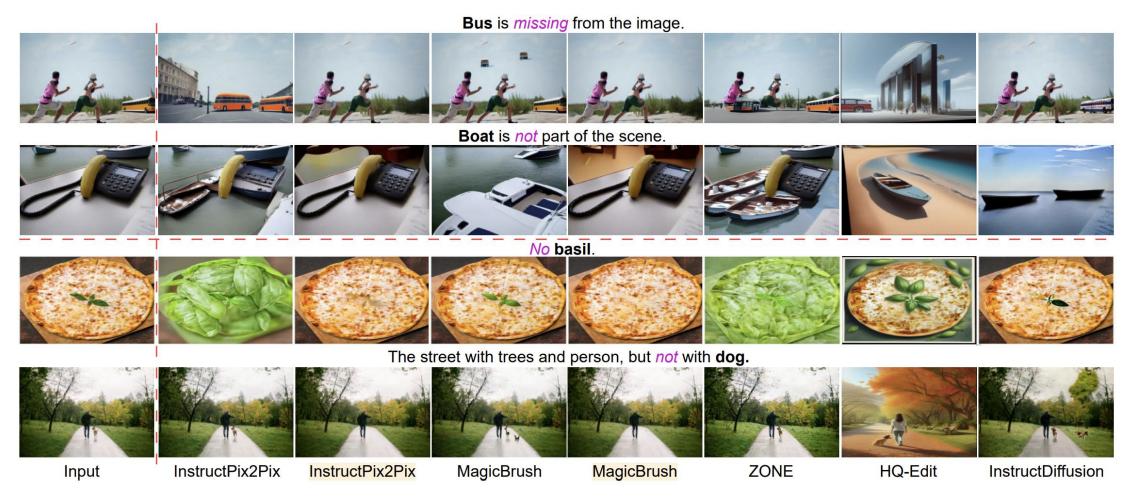
```
T: considered model's outputs
s: retention score
  1: s := 0
  2: for each tuple (\mathcal{F}^{(i)}, \mathcal{T}_o^{(i)}, \mathcal{T}^{(i)}) in (\mathcal{F}, \mathcal{T}_o, \mathcal{T}) do
           list^1 := [], list^2 := []
       \mathcal{O} \leftarrow \operatorname{extractor}(\mathcal{T}_o^{(i)})
                                                   \triangleright Original objects in \mathcal{I}
                                                   \triangleright Objects are still in \mathcal{F}^{(i)}
           p^1 \leftarrow \text{OVD}(\mathcal{F}^{(i)}, \mathcal{O})
           for each object in p^1 do
                  # each object in p^1 may overlap with multiple
      confidence scores; store each object only once
                  append unique object to list<sup>1</sup>
  7:
            end for
  8:
           p^2 \leftarrow \text{OVD}(\mathcal{T}^{(i)}, \text{list}^1) \quad \triangleright \text{Objects in } \mathcal{F}^{(i)} \& \mathcal{T}^{(i)}
            for each object in p^2 do
10:
                  append unique object to list<sup>2</sup>
11:
            end for
12:
            score \leftarrow length of list^2 / length of list^1
13:
            s \leftarrow s + score
14:
15: end for
16: s \leftarrow s / |\mathcal{T}|
17: return s
```

Quantitative Results

Methods	Image Quality						Negation Understanding					
	L1↓	L2↓	CLIP-I ↑	DINO ↑	FID ↓	LPIPS ↓	LLaVA-NeXT		OWLv2			
							Removal ↑	Retention ↑	Removal ↑	AUC-Removal ↑	Retention ↑	
InstructPix2Pix [1]	11.24	3.59	81.68	73.53	10.60	0.43	3.83	81.96	6.70	50.11	81.63	
InstructPix2Pix	8.32	2.32	93.11	91.67	4.08	0.33	93.62	98.26	92.66	97.89	95.83	
MagicBrush [28]	8.95	2.69	88.29	84.91	7.80	0.36	5.06	93.86	8.13	52.48	91.39	
MagicBrush	8.38	2.35	93.04	91.53	4.15	0.33	92.18	98.21	91.24	97.34	98.07	
ZONE [10]	11.95	3.67	74.12	63.18	14.95	0.46	2.93	72.38	6.47	46.04	69.07	
HQ-Edit [8]	23.48	9.61	62.84	46.60	27.61	0.67	32.23	54.75	40.42	70.29	57.43	
InstructDiffusion [4]	8.54	2.54	90.57	88.62	6.89	0.34	31.46	97.55	30.00	67.99	97.58	

Quantitative results of five image editing SOTA methods on the **evaluation set** of NeIn. All the metrics are in (%). The InstructPix2Pix (2nd row) and MagicBrush (4th row) fine-tuned on NeIn's training set are highlighted.

Qualitative Results



Qualitative results of five methods on **NeIn's evaluation samples** (first two samples) and **random image-prompt pairs** (last two samples). The **fine-tuned** InstructPix2Pix (3rd column) and MagicBrush (5th column) on NeIn's training set are highlighted.

Conclusion

- We introduce **NeIn**, the **first** large-scale dataset for negation understanding for image editing task. Additionally, we present a comprehensive **evaluation protocol**, including *removal* and *retention* aspects, to assess the performance of current image editing models on negation understanding.
- **Limitations**: (1) we have only performed experiments using image editing models, and (2) the negative predefined prompts are relatively simple.
- **Future Directions**: (1) fine-tuning and benchmarking NeIn for *other tasks* in vision-language domain; (2) considering *complex negative sentences* involving words such as "except", "neither-nor", etc.

