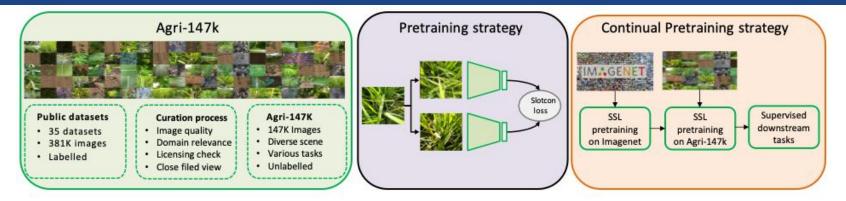
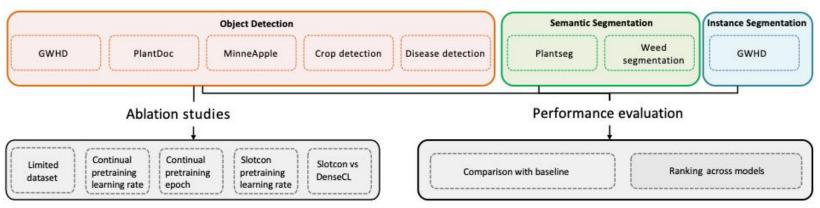


Md Jaber Al Nahian, Tapotosh Ghosh, Farnaz Sheikhi, Farhad Maleki University of Calgary, Calgary, AB, Canada

Motivation

- ✓ Foundation models (e.g., CLIP, DINO, SAM) underperform in agriculture
- ✓ Agricultural tasks require fine-grained, domain-specific understanding
- Existing FMs lack robustness to diverse field conditions


Our goal: Build a self-supervised, labelefficient foundation model for close-field agricultural vision

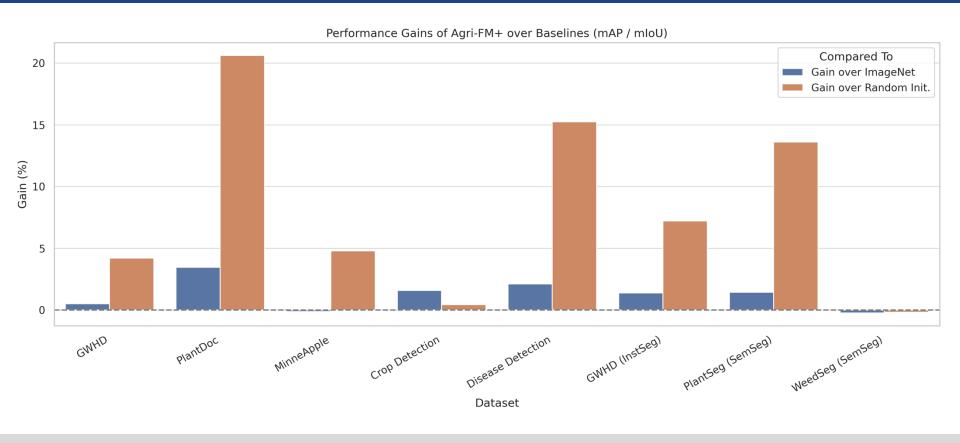

Key Contributions

- Curated Agri-147K: 147K high quality, diverse agricultural mages from 35 public datasets
- Introduced Agri-FM+: first agricultural vision foundation model for close-field tasks
- Extensive evaluation: 8 datasets across object detection, semantic and instance segmentation

Methodology

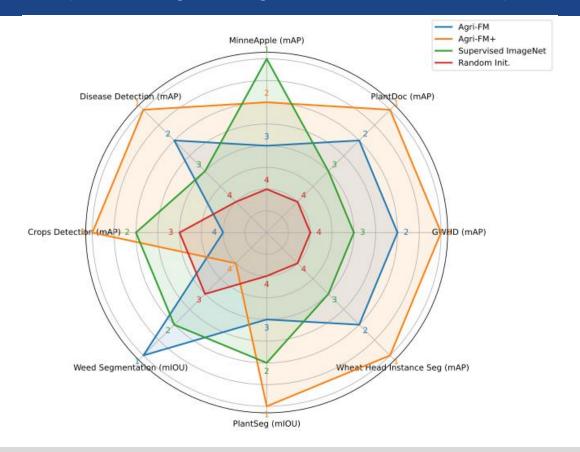
Downstream applications

Agri-FM+ Outperform Across All Tasks


Pretrained ResNet-50 Weight			Object Det. (m	(AP)	Instance Seg. (mAP)	Semantic Seg. $(mIoU)$		
	GWHD	PlantDoc	MinneApple	Crop Det.	Disease Det.	GWHD	PlantSeg	Weed Seg.
Random Init.	44.27	20.99	35.61	32.96	34.57	66.26	16.15	95.13
Supervised ImageNet	47.97	38.15	40.53	31.81	47.71	72.09	28.31	95.17
Agri-FM	48.18	38.53	38.21	30.01	47.90	72.41	28.07	95.87
Agri-FM+	48.48	41.61	40.41	33.41	49.83	73.48	29.76	94.95

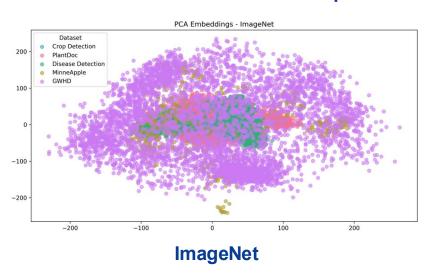
Ablation on Limited Annotation Scenario

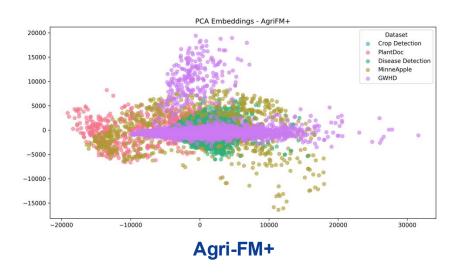
Pretrained ResNet-50 Weight	GWHD (mAP)		PlantDoc (mAP)			MinneApple (mAP)			Disease Detection (mAP)			
	5%	10%	20%	5%	10%	20%	5%	10%	20%	5%	10%	20%
Random Init.	34.57	38.32	41.91	3.72	6.19	10.84	19.82	25.81	27.11	15.94	19.13	26.16
Supervised ImageNet	38.33	39.71	41.99	9.17	17.97	22.92	23.25	28.55	32.52	22.46	27.29	36.31
Agri-FM	37.92	39.41	41.29	9.16	15.04	19.79	21.44	28.96	32.61	20.62	25.71	34.98
Agri-FM+	39.24	40.41	42.44	10.73	18.09	24.22	22.08	30.01	33.21	23.18	29.09	37.06


Motivation Contributions Method **Results** Takeaway

Performance Gains (%) of Agri-FM+ over ImageNet and Random Init.

Results


Consistent Top Rankings of Agri-FM+ Across Multiple Vision Tasks



Results

Improved Feature Clustering with Agri-FM+

Feature Representation of ImageNet vs Agri-FM+

Motivation Contributions Method Results Takeaways

Results Highlights

- ✓ Benchmarked on 8 datasets across detection, segmentation, and instance segmentation
- ✓ In fully labeled setup: +1.27% over ImageNet, +8.25% over random init.
- ✓ In low-label setup (10%): +1.02% over ImageNet, +4.54% over random init
- ✓ Agri-FM+ ranks 1st in 6 of 8 tasks

Key Takeaways

- ✓ Agri-FM+ is the first self-supervised foundation model for agricultural vision
- Demonstrates strong domain adaptation, generalization, and label efficiency
- Visit our poster to learn more!

11