

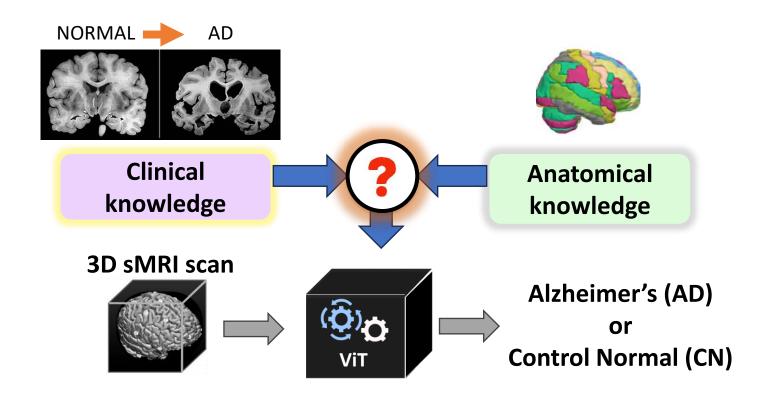
Rel-SA: Alzheimer's Disease Detection using Relevanceaugmented Self Attention by Inducing Domain Priors in Vision Transformers

Madhumitha V*,1 · Sunayna Padhye*,1 · Shanawaj Sahebpatel Madarkar*,1,2 · Susmit Agrawal¹ · Konda Reddy Mopuri¹

¹ Indian Institute of Technology Hyderabad, India & ² Indian Navy

Motivation

Can we incorporate crucial domain-specific knowledge, both clinical and anatomical, as an inductive bias for ViT-based models to learn effectively?



Contributions

- Relevance Augmented Self Attention (Rel-SA) module, encoding clinical priors using Relevance Bias
- Unifying two clinically validated brain atlases: 1) AAL3v1 and 2) JHU White Matter atlas
- Qualitative Evaluation through:
 - Leave-One-Out Analysis, and
 - Reverse Analysis

Model Architecture Design

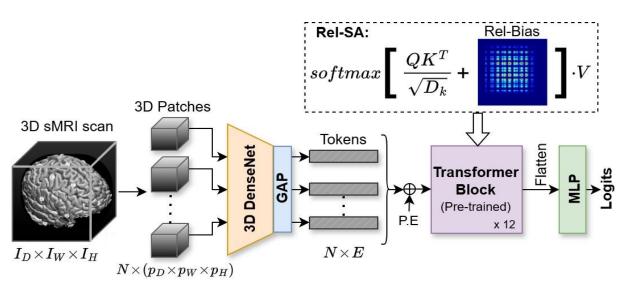


Fig 1: 3D Densenet+ViT Architecture with Rel-Bias in the Rel-SA module.

Rel-SA:

$$Rel-SA(Q,K,V) = \sigma \left(\frac{QK^{T}}{\sqrt{d}} + \phi(M; w_{high}, \alpha) \right) V$$

where,
$$Q = XW_Q$$
, $K = XW_K$, $V = XW_V$, $X \in \mathbb{R}^{N \times E}$, $\phi(\cdot) \in \mathbb{R}^{N \times N}$: $Rel\text{-}Bias$, $\sigma(\cdot)$: $softmax$

Model Architecture Design

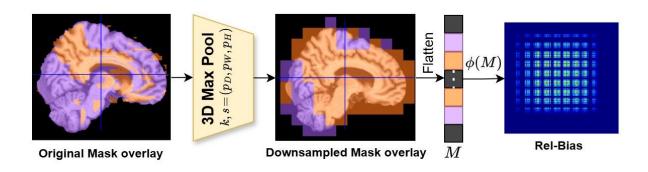


Fig 2: Rel-Bias calculation using relevance regions identified using Atlas.

Score vector:

$$S(M; w_{high}, \alpha) = w_{high} \cdot M_{high} + w_{low} \cdot M_{low},$$
$$w_{low} = \alpha \cdot w_{high}$$
where, $S \in \mathbb{R}^{N \times 1}$, $M \in \mathbb{R}^{N \times 1}$, $\alpha \in (0,1)$

Rel-Bias:

$$\phi(M; w_{high}, \alpha) = \beta \cdot ||S(M)S(M)^T||_F$$

where, β is a hyperparameter

Experiments

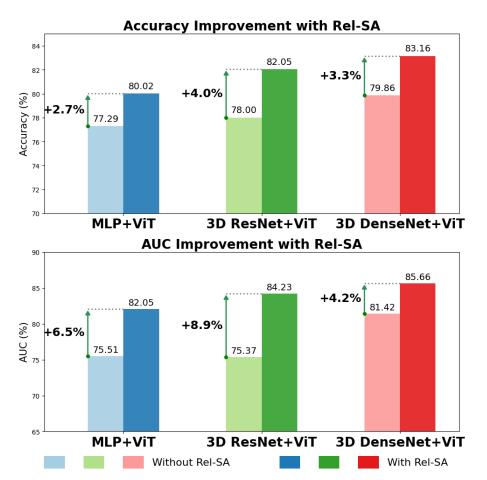


Fig 4: Performance analysis of ViTs w/ and w/o Rel-SA on ADNI dataset for AD-CN classification

Table 1: AD-CN classification analysis using Rel-SA on ADNI/AIBL

Dataset	Metric (%)	w/ Rel-SA	w/o Rel-SA
ADNI	Acc.	83.16 _{±0.54}	79.86 _{±0.94}
	AUC	85.66 _{±0.87}	81.42 _{±1.83}
AIBL	Acc.	87.40 _{±2.58}	82.81 _{±1.55}
	AUC	83.57 _{±2.25}	81.42 _{±2.29}

- Rel-SA's max boost to ViT-base:
 Accuracy: ~4% & AUC: ~9%
- Parametric overhead: just 24 additional parameters!

Attention Rollout Visualizations

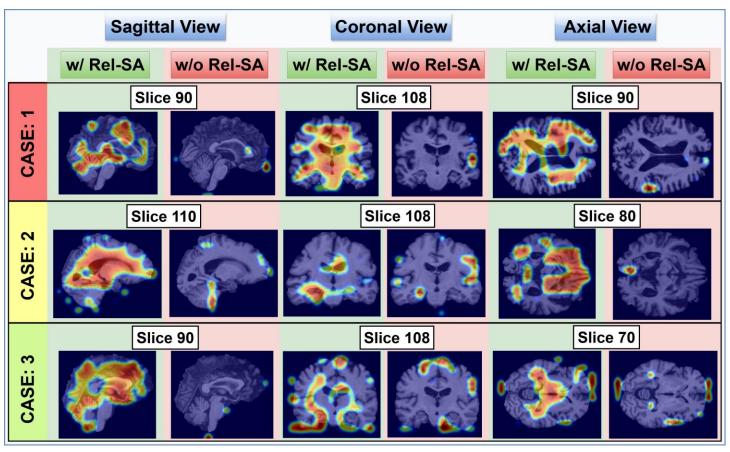


Fig 3: Case-wise Comparative Analysis of Attention Rollout visualizations. Case 1: GT = AD, both models predict AD; Case 2: GT = AD, Rel-SA predicts AD while vanilla ViT predicts CN; and Case 3: GT = CN, both models predict CN.

Post-hoc Analysis

Leave-One-Out Analysis

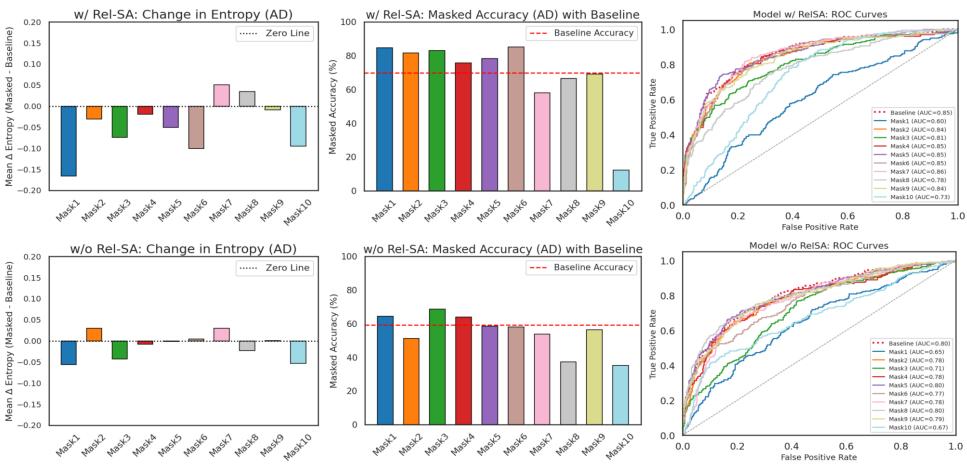


Fig 5: Leave-one-out Analysis of 3D Densenet+ViT model's performance w/ and w/o Rel-SA

Post-hoc Analysis

Reverse Analysis

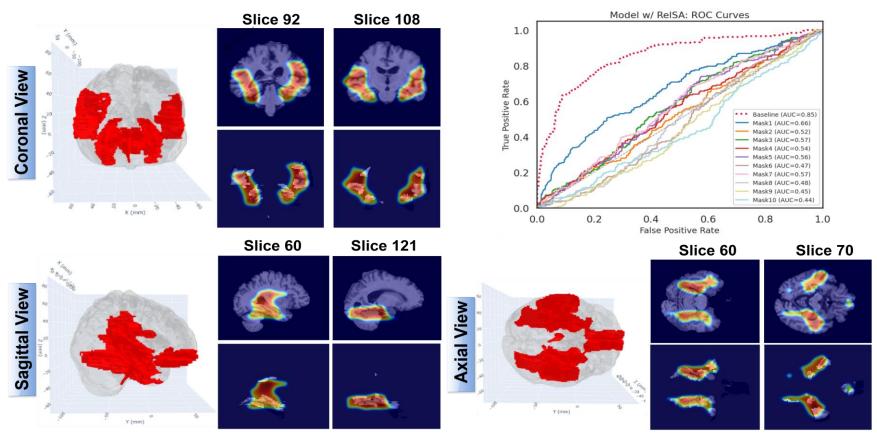


Fig 6: Reverse Analysis of 3D Densenet+ViT model's performance w/ and w/o Rel-SA using Mask1

Conclusion

- ➤ Our results depict that integrating clinical knowledge through Rel-SA can have a considerable impact both in terms of performance and faithful interpretations of the sMRI data consistent with Neuroscience literature.
- > The key lies in leveraging domain knowledge as the right inductive bias.

Thank You

CONTACT:

Madhumitha V ai23resch11004@iith.ac.in https://madhuv29.github.io/ Dr. Konda Reddy Mopuri krmopuri@ai.iith.ac.in https://krmopuri.github.io/

