

Multi-Spectral Imaging and Data Fusion for Real-Time Bleeding Detection

Authors: Ghazal Rouhafzay, Stephen Rowlands, Angel J. Valencia, Shengsong Yang, Pierre Payeur, Haitao Tian & James Dickens.

Presenter: Ghazal Rouhafzay

Introduction and Motivation: Enhancing Real-Time Incident Monitoring

- Advancement of smart cities requires real-time incident monitoring.
- Real-time bleeding detection provides crucial insights for rescue teams in emergency situations.
- Addresses scenarios where victims may be unattended or incapacitated, enabling remote assessment of patient condition.

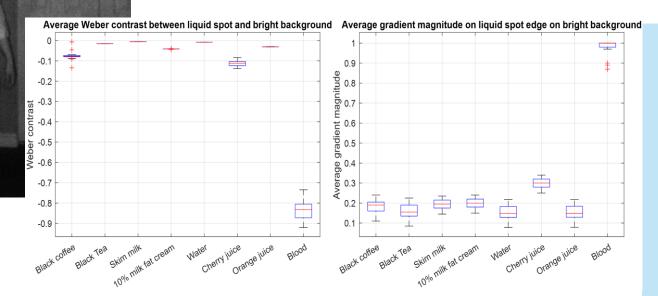
Key Advantage:

- Effective operation in **low-light conditions** and discrimination between blood and other fluids.
- Current literature has limited exploration of liquid spill detection using visual sensors, especially with **combined thermal** and near-infrared imaging for bleeding detection.

Multi-Spectral System Architecture


System utilizes **two Microcalibir** [1] thermal cameras and **two** RGB-D **Kinect Azure** [2] sensors

with active infrared (IR) cameras pulsing at 850 nm.


Core Hypotheses

Discernible temperature disparity between blood and surrounding surfaces (skin, clothing, objects, flooring) enables detection across various scenarios using thermal cameras.

Hypothesis 2 (IR):

Blood's unique response to IR emitted pulses (850 nm) acts as a key discriminatory factor against common liquids.

- Blood exhibits a notable absorption pattern of 850 nm pulses, appearing significantly lower in intensity (darker) in IR images.
- Other liquids remain nearly imperceptible at 850 nm wavelengths.

Deep Learning Methodology: Thermal Modality

Methodology:

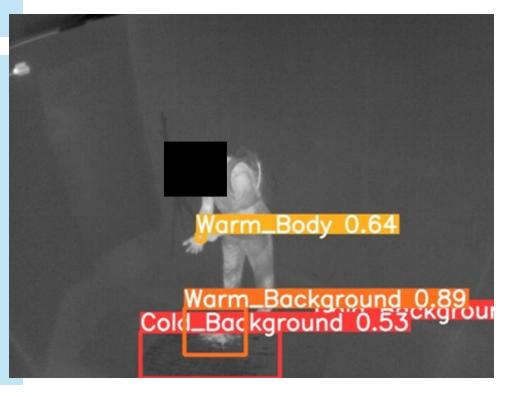
Detector: YOLO [4] (You Only Look Once) object detector.

Dataset: 40 bleeding simulation cases (80 sequences).

Simulated with warm water (~37°C) on diverse surfaces: cloth, wrist, floor,

mattress (various materials).

Data Augmentation: Horizontal flip, cropping, shearing, rotation, brightness, blur, Gaussian noise.


Class Labels:

- Warm liquid on body
- Warm liquid on background
- Cold liquid on body
- Cold liquid on background
- Warm dripping liquid

Mitigation Classes: Face, Forehead (to reduce false positives).

Presence of Other Warm
Objects to Help the Network
Learn the Difference

Deep Learning Methodology: Near-Infrared Modality

Methodology:

Detector: YOLO (You Only Look Once) object detector.

Dataset: Mixed real (187 images) and synthetic IR images.

Synthetic Generation: Registered thermal and IR images; liquid pixels in IR

computationally darkened to mimic blood.

Data Augmentation: Horizontal flip, cropping, shearing, rotation, brightness, blur, Gaussian noise.

Class Labels:

- Blood on skin
- Blood on background (clothes, floor)

Annotation Strategy

Challenge:

Irregular, dynamic liquid shapes.

Optimization: Fewer, larger bounding boxes for entire liquid patches.

Benefit: Improved detection accuracy, aligns with thermal properties.

Multi-Modal Image Registration


Importance: Spatial correspondence between modalities.

Challenge: Nonlinear radiation distortion limits SIFT/SURF.

Solution: RIFT (Radiation-Variation Insensitive Feature

Transform) [5].

Result: Affine transformation for pixel-to-pixel alignment.

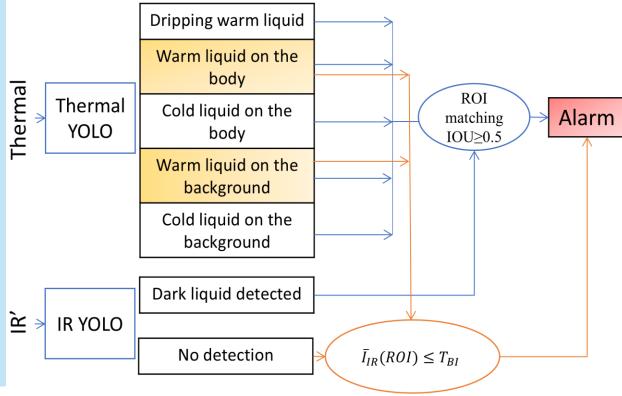
Rule-Based Alarm System: Fusing Thermal and IR Detections

Decision Logic

Detection Matching: Intersection over Union (IoU \geq 0.5) between thermal and IR bounding boxes.

Primary Alarm (Bleeding Confirmed): Dark area in IR AND Warm liquid in Thermal.

Rationale: Dark IR is most reliable for blood.


Notice/Warning (Liquid Detected):

Dark area in IR AND Cold/Unspecified liquid in Thermal.

Dark Background Scenario:

Warm liquid in Thermal BUT No IR detection (e.g., dark clothing).

If IR background intensity < *Threshold*, then *Warm liquid on dark background* → *may require attention*.

Experimental Validation and Key Performance Insights

Implementation: C++ library, PyTorch/libTorch, real-time GPU

(NVIDIA RTX 3090TI, 30 FPS).

Focus: Recognition rate (presence) over precise localization.

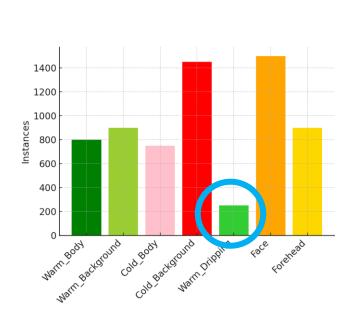
Key Findings:

Surface Impact: Higher contrast, more effective on background surfaces.

Thermal Performance on Body: Challenging due to low temperature contrast with blood/skin.

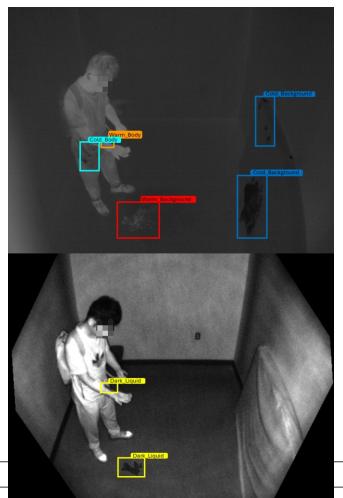
False Positives (Thermal): 12.9% for warm liquid on body (heat trapped in joints).

Modality	Metric	Back	ground	Body		
		Warm	Cold	Warm	Cold	
Thermal	RR	86%	89.18%	40.2%	44.4%	
	FRR	6.5%	8.23%	12.9%	4.3%	
IR	RR	80	0%	75%		
	FRR	C)%	2.59%		
Multi-modal	RR	92	2%	68.3%		
	FRR	C)%	0%		


Experimental Validation and Key Performance Insights


Key Findings:

Annotation Benefit: Optimized strategy significantly improves mAP across classes.


Dripping Liquid: Most challenging due to small sample size

and appearance.

Multi-Modal Synergy and Comprehensive Performance

Key Findings (Continued):

Multi-Modal Enhancement: Significantly improves performance by eliminating false detections via cross-checking.

dark liquid matched with warm liquid on body

dark liquid matched with warm liquid on background

O-- C--1-1--4

Surface Type & Temperature Impact (Referring to previous table):

- 100% accuracy for warm liquid on soft background (mattress).
- Reduced accuracy on solid backgrounds.
- Higher rates on textiles vs. skin (due to absorption/contrast).

	On Background				On Subject			
Liquid temperature relative to the surface beneath the liquid	Warm		Cold		Warm		Cold	
Enquire temperature relative to the surface beneath the inquire	Soft (Mattress)	Solid (Flooring)	Soft (Mattress)	Solid (Flooring)	Textile	Skin	Textile	Skin
Recognition Rate (%) with confidence threshold = 0.4	100%	75.00%	90.54%	0% (No test sample)	54.16%	50%	51.85%	0% (No test sample)

Conclusion

Summary:

- Real-time bleeding detection system: Long-wave (thermal) + Near-infrared imaging. Validated blood's unique 850 nm IR spectral signature (lower intensity).
- Employed complementary deep object detectors (Thermal & IR).
- Optimized annotation strategy: improved detection.
- **Robust detection**: Precise multi-modal matching and association.
- Multi-modal data fusion: Leverages thermal signature & dark IR appearance.
- Rule-based alarm system: Real-time responsiveness.
- Significant Step: Accurate, reliable bleeding detection for medical/emergency applications.

Key Future Work:

Dripping Liquid: Improve detection (sample size, feature learning).

False Positives: Collect diverse data (address body joint misclassifications).

Model Consolidation: Explore single YOLOv5 model for thermal + IR input (acceleration).

References

- [1] Teledyne DALSA, "MicroCalibir compact uncooled LWIRcores." https://www.teledynedalsa.com.
- [2] Microsoft, "Azure Kinect DK.",https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:overviewtab.
- [3] DeJong, S. A., Lu, Z., Cassidy, B. M., O'Brien, W. L., Morgan, S. L., and Myrick, M. L. "Detection Limits forBlood on Four Fabric Types Using Infrared Diffuse Reflection Spectroscopy in Mid- and Near-Infrared Spectral Win-dows," Analytical Chemistry, 2015, 87(17):8740-7. DOI:10.1021/acs.analchem.5b01825
- [4] Jocher, G., Ultralyctics, Yolov5, url:https://github.com/ultralytics/yolov5.
- [5] Li, J., Hu, Q., and Ai, M. "RIFT: Multi-Modal Image Match-ing Based on Radiation-Variation Insensitive Feature Trans-form," in IEEE Transactions on Image Processing, vol. 29,pp. 3296-3310, 2020, doi: 10.1109/TIP.2019.2959244.

Contact Information:

Ghazal Rouhafzay

Université de Moncton ghazal.rouhafzay@umoncton.ca