Efficient Hierarchical Entropy Model for Learned Point Cloud Compression

Rui Song · Chunyang Fu · Shan Liu · Ge Li

West Building Exhibit Halls ABC 193


Learning an accurate entropy model is a fundamental way to remove the redundancy in point cloud compression. Recently, the octree-based auto-regressive entropy model which adopts the self-attention mechanism to explore dependencies in a large-scale context is proved to be promising. However, heavy global attention computations and auto-regressive contexts are inefficient for practical applications. To improve the efficiency of the attention model, we propose a hierarchical attention structure that has a linear complexity to the context scale and maintains the global receptive field. Furthermore, we present a grouped context structure to address the serial decoding issue caused by the auto-regression while preserving the compression performance. Experiments demonstrate that the proposed entropy model achieves superior rate-distortion performance and significant decoding latency reduction compared with the state-of-the-art large-scale auto-regressive entropy model.

Chat is not available.