Skip to yearly menu bar Skip to main content


STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection

Zhenglin Zhou · Huaxia Li · Hong Liu · Nanyang Wang · Gang Yu · Rongrong Ji

West Building Exhibit Halls ABC 297


Recently, deep learning-based facial landmark detection has achieved significant improvement. However, the semantic ambiguity problem degrades detection performance. Specifically, the semantic ambiguity causes inconsistent annotation and negatively affects the model’s convergence, leading to worse accuracy and instability prediction. To solve this problem, we propose a Self-adapTive Ambiguity Reduction (STAR) loss by exploiting the properties of semantic ambiguity. We find that semantic ambiguity results in the anisotropic predicted distribution, which inspires us to use predicted distribution to represent semantic ambiguity. Based on this, we design the STAR loss that measures the anisotropism of the predicted distribution. Compared with the standard regression loss, STAR loss is encouraged to be small when the predicted distribution is anisotropic and thus adaptively mitigates the impact of semantic ambiguity. Moreover, we propose two kinds of eigenvalue restriction methods that could avoid both distribution’s abnormal change and the model’s premature convergence. Finally, the comprehensive experiments demonstrate that STAR loss outperforms the state-of-the-art methods on three benchmarks, i.e., COFW, 300W, and WFLW, with negligible computation overhead. Code is at

Chat is not available.