Skip to yearly menu bar Skip to main content


LANIT: Language-Driven Image-to-Image Translation for Unlabeled Data

Jihye Park · Sunwoo Kim · Soohyun Kim · Seokju Cho · Jaejun Yoo · Youngjung Uh · Seungryong Kim

West Building Exhibit Halls ABC 267


Existing techniques for image-to-image translation commonly have suffered from two critical problems: heavy reliance on per-sample domain annotation and/or inability to handle multiple attributes per image. Recent truly-unsupervised methods adopt clustering approaches to easily provide per-sample one-hot domain labels. However, they cannot account for the real-world setting: one sample may have multiple attributes. In addition, the semantics of the clusters are not easily coupled to human understanding. To overcome these, we present LANguage-driven Image-to-image Translation model, dubbed LANIT. We leverage easy-to-obtain candidate attributes given in texts for a dataset: the similarity between images and attributes indicates per-sample domain labels. This formulation naturally enables multi-hot labels so that users can specify the target domain with a set of attributes in language. To account for the case that the initial prompts are inaccurate, we also present prompt learning. We further present domain regularization loss that enforces translated images to be mapped to the corresponding domain. Experiments on several standard benchmarks demonstrate that LANIT achieves comparable or superior performance to existing models. The code is available at

Chat is not available.