Skip to yearly menu bar Skip to main content


Curvature-Balanced Feature Manifold Learning for Long-Tailed Classification

Yanbiao Ma · Licheng Jiao · Fang Liu · Shuyuan Yang · Xu Liu · Lingling Li

West Building Exhibit Halls ABC 331


To address the challenges of long-tailed classification, researchers have proposed several approaches to reduce model bias, most of which assume that classes with few samples are weak classes. However, recent studies have shown that tail classes are not always hard to learn, and model bias has been observed on sample-balanced datasets, suggesting the existence of other factors that affect model bias. In this work, we systematically propose a series of geometric measures for perceptual manifolds in deep neural networks, and then explore the effect of the geometric characteristics of perceptual manifolds on classification difficulty and how learning shapes the geometric characteristics of perceptual manifolds. An unanticipated finding is that the correlation between the class accuracy and the separation degree of perceptual manifolds gradually decreases during training, while the negative correlation with the curvature gradually increases, implying that curvature imbalance leads to model bias. Therefore, we propose curvature regularization to facilitate the model to learn curvature-balanced and flatter perceptual manifolds. Evaluations on multiple long-tailed and non-long-tailed datasets show the excellent performance and exciting generality of our approach, especially in achieving significant performance improvements based on current state-of-the-art techniques. Our work reminds researchers to pay attention to model bias not only on long-tailed datasets but also on non-long-tailed and even data-balanced datasets, which can improve model performance from another perspective.

Chat is not available.