Skip to yearly menu bar Skip to main content


Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit

Xiaohang Wang · Xuanhong Chen · Bingbing Ni · Hang Wang · Zhengyan Tong · Yutian Liu

West Building Exhibit Halls ABC 170


The ability of scale-equivariance processing blocks plays a central role in arbitrary-scale image super-resolution tasks. Inspired by this crucial observation, this work proposes two novel scale-equivariant modules within a transformer-style framework to enhance arbitrary-scale image super-resolution (ASISR) performance, especially in high upsampling rate image extrapolation. In the feature extraction phase, we design a plug-in module called Adaptive Feature Extractor, which injects explicit scale information in frequency-expanded encoding, thus achieving scale-adaption in representation learning. In the upsampling phase, a learnable Neural Kriging upsampling operator is introduced, which simultaneously encodes both relative distance (i.e., scale-aware) information as well as feature similarity (i.e., with priori learned from training data) in a bilateral manner, providing scale-encoded spatial feature fusion. The above operators are easily plugged into multiple stages of a SR network, and a recent emerging pre-training strategy is also adopted to impulse the model’s performance further. Extensive experimental results have demonstrated the outstanding scale-equivariance capability offered by the proposed operators and our learning framework, with much better results than previous SOTAs at arbitrary scales for SR. Our code is available at

Chat is not available.