Skip to yearly menu bar Skip to main content


Memory-based Adapters for Online 3D Scene Perception

Xiuwei Xu · Chong Xia · Ziwei Wang · Linqing Zhao · Yueqi Duan · Jie Zhou · Jiwen Lu

Arch 4A-E Poster #198
[ ]
Fri 21 Jun 10:30 a.m. PDT — noon PDT


In this paper, we propose a new framework for online 3D scene perception. Conventional 3D scene perception methods are offline, i.e., take an already reconstructed 3D scene geometry as input, which is not applicable in robotic applications where the input data is streaming RGB-D videos rather than a complete 3D scene reconstructed from pre-collected RGB-D videos.To deal with online 3D scene perception tasks where data collection and perception should be performed simultaneously, the model should be able to process 3D scenes frame by frame and make use of the temporal information.To this end, we propose an adapter-based plug-and-play module for the backbone of 3D scene perception model, which constructs memory to cache and aggregate the extracted RGB-D features to empower offline models with temporal learning ability. Specifically, we propose a queued memory mechanism to cache the supporting point cloud and image features. Then we devise aggregation modules which directly perform on the memory and pass temporal information to current frame. We further propose 3D-to-2D adapter to enhance image features with strong global context. Our adapters can be easily inserted into mainstream offline architectures of different tasks and significantly boost their performance on online tasks. Extensive experiments on ScanNet and SceneNN datasets demonstrate our approach achieves leading performance on three 3D scene perception tasks compared with state-of-th-art online methods by simply finetuning existing offline models, without any model and task-specific designs.

Live content is unavailable. Log in and register to view live content