Skip to yearly menu bar Skip to main content


Fine-Grained Bipartite Concept Factorization for Clustering

Chong Peng · Pengfei Zhang · Yongyong Chen · zhao kang · Chenglizhao Chen · Qiang Cheng

Arch 4A-E Poster #206
[ ]
Fri 21 Jun 5 p.m. PDT — 6:30 p.m. PDT


In this paper, we propose a novel concept factorization method that seeks factor matrices using a cross-order positive semi-definite neighbor graph, which provides comprehensive and complementary neighbor information of the data. The factor matrices are learned with bipartite graph partitioning, which exploits explicit cluster structure of the data and is more geared towards clustering application. We develop an effective and efficient optimization algorithm for our method, and provide elegant theoretical results about the convergence. Extensive experimental results confirm the effectiveness of the proposed method.

Live content is unavailable. Log in and register to view live content