Skip to yearly menu bar Skip to main content


LTM: Lightweight Textured Mesh Extraction and Refinement of Large Unbounded Scenes for Efficient Storage and Real-time Rendering

Jaehoon Choi · Rajvi Shah · Qinbo Li · Yipeng Wang · Ayush Saraf · Changil Kim · Jia-Bin Huang · Dinesh Manocha · Suhib Alsisan · Johannes Kopf

Arch 4A-E Poster #21
[ ] [ Project Page ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Advancements in neural signed distance fields (SDFs) have enabled modeling 3D surface geometry from a set of 2D images of real-world scenes. Baking neural SDFs can extract explicit mesh with appearance baked into texture maps as neural features. The baked meshes still have a large memory footprint and require a powerful GPU for real-time rendering. Neural optimization of such large meshes with differentiable rendering pose significant challenges. We propose a method to produce optimized meshes for large unbounded scenes with low triangle budget and high fidelity of geometry and appearance. We achieve this by combining advancements in baking neural SDFs with classical mesh simplification techniques and proposing a joint appearance-geometry refinement step. The visual quality is comparable to or better than state-of-the-art neural meshing and baking methods with high geometric accuracy despite significant reduction in triangle count, making the produced meshes efficient for storage, transmission, and rendering on mobile hardware. We validate the effectiveness of the proposed method on large unbounded scenes from mip-NeRF 360, Tanks & Temples, and Deep Blending datasets, achieving at-par rendering quality with 73× reduced triangles and 11× reduction in memory footprint.

Live content is unavailable. Log in and register to view live content