Skip to yearly menu bar Skip to main content


Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships

Rangel Daroya · Aaron Sun · Subhransu Maji

Arch 4A-E Poster #450
award Highlight
[ ] [ Project Page ]
Fri 21 Jun 5 p.m. PDT — 6:30 p.m. PDT


Modeling and visualizing relationships between tasks or datasets is an important step towards solving various meta-tasks such as dataset discovery, multi-tasking, and transfer learning. However, many relationships, such as containment and transferability, are naturally asymmetric and current approaches for representation and visualization (e.g., t-SNE) do not readily support this. We propose Task2Box, an approach to represent tasks using box embeddings---axis-aligned hyperrectangles in low dimensional spaces---that can capture asymmetric relationships between them through volumetric overlaps. We show that Task2Box accurately predicts unseen hierarchical relationships between nodes in ImageNet and iNaturalist datasets, as well as transferability between tasks in the Taskonomy benchmark. We also show that box embeddings estimated from task representations (e.g., CLIP, Task2Vec, or attribute based) can be used to predict relationships between unseen tasks more accurately than classifiers trained on the same representations, as well as handcrafted asymmetric distances (e.g., KL divergence). This suggests that low-dimensional box embeddings can effectively capture these task relationships and have the added advantage of being interpretable. We use the approach to visualize relationships among publicly available image classification datasets on popular dataset hosting platform called Hugging Face.

Live content is unavailable. Log in and register to view live content