Skip to yearly menu bar Skip to main content


Taming Self-Training for Open-Vocabulary Object Detection

Shiyu Zhao · Samuel Schulter · Long Zhao · Zhixing Zhang · Vijay Kumar BG · Yumin Suh · Manmohan Chandraker · Dimitris N. Metaxas

Arch 4A-E Poster #415
[ ]
Thu 20 Jun 10:30 a.m. PDT — noon PDT


Recent studies have shown promising performance in open-vocabulary object detection (OVD) by utilizing pseudo labels (PLs) from pretrained vision and language models (VLMs). However, teacher-student self-training, a powerful and widely used paradigm to leverage PLs, is rarely explored for OVD. This work identifies two challenges of using self-training in OVD: noisy PLs from VLMs and frequent distribution changes of PLs. To address these challenges, we propose SAS-Det that tames self-training for OVD from two key perspectives. First, we present a split-and-fusion (SAF) head that splits a standard detection into an open-branch and a closed-branch. This design can reduce noisy supervision from pseudo boxes. Moreover, the two branches learn complementary knowledge from different training data, significantly enhancing performance when fused together. Second, in our view, unlike in closed-set tasks, the PL distributions in OVD are solely determined by the teacher model. We introduce a periodic update strategy to decrease the number of updates to the teacher, thereby decreasing the frequency of changes in PL distributions, which stabilizes the training process. Extensive experiments demonstrate SAS-Det is both efficient and effective. SAS-Det outperforms recent models of the same scale by a clear margin and achieves 37.4 AP50 and 29.1 APr on novel categories of the COCO and LVIS benchmarks, respectively. Code is available at

Live content is unavailable. Log in and register to view live content